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ABSTRACT 

 

MACHINE LEARNING BASED INDOOR AIR POLLUTANT SOURCE 
RECOGNITION WITH MULTI-SENSOR ARRAY ELECTRONIC NOSE 

 

 

Yeşilata, Mehmet Yiğitcan 
M.Sc. in Building Science, Department of Architecture 

Supervisor: Asst. Prof. Dr. Mehmet Koray Pekeriçli 
 

10 February 2022, 101 pages 

 

Indoor Air Quality (IAQ) is closely linked to health and well-being. Humans spend 

the majority of their time indoors. Breathable air that is free of harmful pollutants can 

result in an improved quality of life, a decreased risk of respiratory infections, and a 

decreased risk of developing chronic conditions. Cleaning chemicals, construction 

operations, smoking, perfumes, building materials and outdoor pollutants can all 

contribute to indoor air pollution. Detecting the sources of pollution is essential in 

order to improve interior air quality. A sensing device known as an electronic nose 

collects various sensor data to detect scents or flavors. Two different types of 

electronic nose are used in this research to collect data. The first one has 8 VOC sensors 

that operate in response to the gas resistance of the MOX layer. Each sensor is 

simultaneously heated by a different heater profile, and their reaction to the gas 

produces an 8 dimensional sensitivity that is proportional to the sensor's gas resistance 

at that temperature. The second one collects different types of parameters that affect 

indoor air quality like PM2.5, PM10,  CO2, Formaldehyde, Ethanol, H2, TVOC, 

Temperature and Humidity with a multi sensor array. The experiment was conducted 

in a 130-liter box. Throughout the experiment, nine different materials were measured, 

including office air, smoking, cleaning materials, alcohol-sanitizer, curry, coffee, 

painted tile, stone wool, and varnished wood with two different electronic noses. Data 

has been modelled with Naive Bayes, kNN, Random Forest Classifiers to predict 

pollutant sources in the box. Random Forest algorithm with 10 trees gives the best 

result with data collected from multi sensor array based electronic nose. The algorithm 
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gives 0.95 accuracy with 0.94 precision on the sensor data. The field experiments 

demonstrate that detecting pollutant sources using a multisensor array-based electronic 

nose is feasible without requiring a complex infrastructure, and that this technology 

can be used as a reliable solution for pollutant source detection because it provides 

higher accuracy and precision results than existing approaches in the industry. 
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ÖZ 

 

MACHINE LEARNING BASED INDOOR AIR POLLUTANT SOURCE 
RECOGNITION WITH MULTI-SENSOR ARRAY ELECTRONIC NOSE 

 

 

Yeşilata, Mehmet Yiğitcan 
Tez Yöneticisi : Dr. Öğr. Üyesi Mehmet Koray Pekeriçli 

10 Şubat 2022, 101 sayfa 
 

İç mekan hava kalitesi (IAQ), sağlık ve konfor ile yakından ilişkilidir. İnsanlar 

zamanlarının çoğunu iç mekanlarda geçirirler. Zararlı kirleticiler içermeyen 

solunabilir hava, yaşam kalitesinin iyileşmesini, solunum yolu enfeksiyonu riskinin 

azalmasını ve kronik rahatsızlıkların gelişme riskinin azalmasını sağlayabilir. 

Temizlik kimyasalları, inşaat işlemleri, sigara, parfüm, yapı malzemeleri ve dış ortam 

kirleticilerinin tümü iç mekan hava kirliliğine katkıda bulunabilir. İç hava kalitesini 

iyileştirmek için kirlilik kaynaklarının tespiti esastır. Elektronik burun olarak bilinen 

bir algılama cihazı, kokuları veya tatları algılamak için çeşitli sensör verilerini toplar. 

Bu araştırmada veri toplamak için iki farklı tipte elektronik burun kullanılmıştır. İlki, 

MOX katmanındaki gaz direncine duyarlı olarak çalışan sekiz VOC sensörüne 

sahiptir. Her sensör eş zamanlı olarak farklı bir ısıtıcı profili tarafından ısıtılır ve 

sensörlerin gaza tepkileri, her sensörün o sıcaklıktaki gaz direnciyle orantılı olarak 

sekiz boyutlu bir veri üretir. İkincisi, çoklu sensör dizisi ile PM2.5, PM1 0, CO2, 

formaldehit, etanol, H2, TVOC, sıcaklık ve nem gibi iç hava kalitesini etkileyen farklı 

türde parametreleri ölçer. Deney gerçekleştirilirken 130lt kapasiteli bir kutu kullanıldı. 

Deney boyunca ofis havası, sigara, temizlik malzemeleri, alkol-dezenfektan, köri, 

kahve, boyalı kiremit, taş yünü ve vernikli ahşap olmak üzere iki farklı elektronik 

burun ile dokuz farklı malzeme ölçülmüştür. Kutudaki kirletici kaynakları tahmin 

etmek için veriler Naive Bayes, kNN ve Random Forest sınıflandırıcıları ile 

modellenmiştir. Çok sensörlü elektronik burundan toplanan verilerle 10 ağaçlı 

Random Forest algoritması en iyi sonucu verir. Algoritma, sensör verileri üzerinde 

0.95 doğruluk ile 0.94 kesinlik sonuçlarını vermektedir. Saha deneyleri, karmaşık bir 

altyapı gerektirmeden çok sensörlü dizi tabanlı bir elektronik burun kullanarak kirletici 
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kaynaklarının tespit edilmesinin mümkün olduğunu ve bu teknolojinin endüstrideki 

mevcut yaklaşımlardan daha yüksek doğruluk ve kesinlik sonuçları sağladığı için 

kirletici kaynağı tespitinde güvenilir bir çözüm olarak kullanılabileceğini 

göstermektedir. 

 

Anahtar Kelimeler: İç Hava Kalitesi, Elektronik Burun, Koku Tespiti, Makine 

Öğrenmesi   
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CHAPTER 1   

1 INTRODUCTION 

1.1 Motivation 

Indoor air pollution refers to the undesirable physical, chemical, and biological 

characteristics of air in the building. Indoor air might be polluted by numerous kinds 

of contaminants which might come from cleaning products, construction activities, 

tobacco smoke, perfumes, water-damaged building elements and outdoor pollutants.  

It is one of the biggest environmental risks that affects performance, health and 

comfort. Indoor air pollution might be 100 times higher than outdoor pollution in some 

cases and most people spend 90% of their time in buildings.  Exposure to poor indoor 

air can cause different health issues such as skin irritation, nausea, headaches, sick 

building syndrome and even cancer in some cases. According to The World Health 

Organization (WHO) Reports, about 700.000 people died just because of breathing 

poor air inside buildings (Air Pollution, 2020). 

 

Indoor air quality gains much more importance in post-COVID world. After the 

SARS-CoV-2 has rapidly spread in the whole world, building occupants have become 

much more sensitive to the air they inhale. Transmission of the virus through the air is 

directly related to indoor air quality inside buildings. Changes to building operations, 

especially HVAC operations, can reduce airborne transmission. Ventilation and 

filtration are the key operations that can potentially reduce the risk of transmission. 

However, these two operations may not be sufficient on their own to provide good 

indoor air quality inside buildings.  

Many different factors such as building materials, bad filtration, chemicals spreading 

from office furniture, smoking, food and beverages can cause bad air quality. 

Detecting the source of pollutants is crucial to optimize indoor air quality and retrofit 
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the building in some cases. Apart from ventilation and filtration, facility management 

should be aware of the sources of indoor air pollution to make buildings safer in terms 

of virus spread.  

 

Researchers should focus on quality problems of indoor air to adopt legislation, 

inspection and creating mechanisms that act in real time to improve public health. 

There must be mechanisms for data acquisition from buildings and analysis tools that 

correctly analyze the health of the environment in the spaces of public use. 

Mechanisms for data acquisition of indoor air and analysis tools that accurately process 

the data and quality of air in public spheres are needed. 

 

As for the present technology, some sensing devices have succeeded in providing 

reliable, quick and continuous information about surrounding air.  Furthermore, new 

technologies like cloud computing provide an excessive amount of computation power 

to analyze the data collected from these sensors and allow building intelligent 

algorithms based on indoor air quality. After the artificial intelligence evolution in the 

world, many different data analysis and processing tools have been released to create 

smart data-driven applications. All of these technologies and improvements could be 

helpful for creating a better environment inside buildings in  post-COVID world.  

 

Air pollutants can cause an increase on the levels of different types of sensing 

parameters such as CO, CO2, NO2, Ozone, etc. Every pollutant inside the building has 

different parameter patterns indicators. For example, Ozone can be increased by 

electric arcing, electronic air cleaners, some copiers, and printers. Furthermore, 

increase in VOC levels can be caused by air fresheners, furniture, office equipment 

and cleaning agents. Combustion equipment, engines, faulty heating systems are some 

other devices that can cause a rise of CO. A concentration of living creatures (i.e., 

animals, plants) can increase the level of CO2. 

 

The sensing instrument measuring many different parameters can help to analyze 

different pollutant sources. Electronic nose is a concept about detecting odors or 
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flavors. Data collected from the sensing instrument may be used together with the 

electronic nose concept. An electric nose commonly identifies odors by detecting the 

“fingerprint” of a substance compound across several sensors monitored by pattern 

recognition applications. Fingerprint represents measurements of the sensor array 

during the response time to a particular pollutant source. Every different pollutant 

source creates a different fingerprint on the sensor array while polluting indoor air.  

In this study, the fingerprints of different indoor pollutant sources will be analyzed. A 

scalable and high-performance algorithm will be able to detect the source of pollution 

by analyzing fingerprints of building materials and equipment. 

1.2 Aims and Objectives 

There are many studies on pattern recognition of gas sensors. However, most of the 

studies focused on outdoor odor sensing and there is not a sufficient amount of study 

on understanding the complex nature of indoor air quality.  

 

By the end of this study it is expected to:  

● Understanding the relationship between sensing gas parameters and pollution 

sources 

● Investigate the indoor air quality characteristics of different building materials  

● Investigate the effects of systems operating inside buildings on indoor air quality 

● Analysis of big data to recognize the pattern of pollution source
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Importance of Indoor Air Quality 

2.1.1 Well-being and Health 

The impact of indoor air quality on human health was known throughout history. 

Greeks and Romans realized that sick people’s numbers lowered when they increased 

ventilation in mines. Medieval age was very stagnant in the scope of indoor air quality.  

Boyle (1627–1691) and Hooke (1635–1703) found that supply air was essential for 

lungs.  The role of oxygen in breathing was shown by Lavoisier in 1781. He also 

pointed out the relation between oxygen consumption and concentration of CO2.  

Max Pettenkofer found that some undesirable sensations due to stale air were not 

related to temperature, humidity or CO2. He stated that they are related to the presence 

of organic materials exhaled by humans, and while poor indoor air does not have to 

make people sick immediately, it weakens the immune system in time.  

 

Minimum required ventilation rate was firstly defined by Thomas Tredgoldin in 1836. 

He calculated that minimum fresh air should be 2 l/s per person due to breathing and 

candle burning. ASHRAE stated their first ventilation recommendation in 1895 as 15 

l/s per person. During that era, there were two dominant ideas relevant to ventilation. 

Architects and engineers were concerned with providing thermal comfort and 

physicians were concerned with preventing the spread of disease.  

There have been difficulties in assessing the exposure of specific pollutants to humans 

due to lack of monitoring devices until the last few decades. With the spread of 

measurement devices in the last few decades, international scientific communities, 
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health institutions and governments have started to focus on indoor air quality for 

improving comfort and health of building occupants.  For that purpose, IAQ related 

standards, regulations and policies have been developed during the last decades. A 

typical human’s 90% of time is spent in buildings, therefore IAQ has a massive impact 

on health and life quality.  

 

In 2020, World Health Organization (WHO) reported that about 3.8 million people 

dies because of indoor air pollution (WHO, 2020). Indoor air pollution is a 

combination of particulate and gas components. The mixture of indoor air is highly 

dependent on sources, ventilation and emission rates. (Hamanaka and Mutlu, 2018) 

 

Over the last few decades, it is realized that many different symptoms and illnesses are 

related to indoor air quality in buildings. Exposure of different types of pollutants is 

very common, although their effects were not inspected during long years. WHO 

categorizes indoor air related illnesses in two categories: Sick Building Syndrome 

(SBS) and Building Related Illness (WHO, 2020). 

 

WHO defined the concept of Sick Building Syndrome as a collection of nonspecific 

symptoms including eye, nose and throat irritation, mental fatigue, headaches, nausea, 

dizziness and skin irritations, which seem to be linked with occupancy of certain 

workplaces in the 1980s (WHO, 1983 ).  

 

Greer defined SBS as a group of non-specific symptoms with a temporal connection 

to a particular building, but with no specific or obvious cause (Greer, 2007)  WHO 

stated that 20% of total building occupants showed symptoms of SBS (WHO, 2010) 

Air-tightness, high temperature and inadequate ventilation increase the effect of SBS 

in buildings.  

One of the biggest challenges in SBS is the non-specific presence of it. This leads to 

high variability of symptoms in very diverse parts of the human body. SBS can show 

general (hoarseness of voice, allergies, flu-like symptoms, respiratory diseases, 

nausea, dizziness, headache, fatigue, and inability to concentrate), mucous (eye, throat 
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and nose irritations or coughing), dermal (itching skin, face, hands or scalp) symptoms 

(Amin et al., 2015). 

 

Building Related Illnesses can be identified if there are symptoms that are clearly 

related to exposure to poor air in buildings. BRI symptoms can be associated with flu, 

including fever, chills, chest tightness, muscle aches, and cough (Tran et al., 2020).   

2.1.2 Performance 

Poor indoor air quality can affect academic and work performance. It has health and 

cognitive effects. While it causes school and work absenteeism, it also causes difficulty 

in concentrating, impaired memory, and slowed down mental processing.  

 

Bako-Biro et al. (2012) researched the association between ventilation and student 

performance in primary schools of the United Kingdom. For three weeks, they 

measured CO2 and other components of air in two chosen classrooms at each school. 

Ventilation was provided through the windows, which were also used for arranging 

the ventilation rate. They measured the student performance with computer aided tests 

and paper based tasks. They observed that due to the intervention, fresh air supply has 

increased from 0.3-05 to 13-16 l/s per person which led to an increase in student work 

rate by ~7%.  

 

Haverinen-Shaughnessy et al. (2011) focused on larger size of experimental data for 

assessing relation between classroom ventilation rates and academic achievement. 

They observed 100 US primary schools in two different school districts in Southwest 

USA. 87 classrooms had unsatisfactory ventilation rates according to ASHRAE 

Standard 62. They found a linear relationship  between ventilation and performance 

within the range of 0.9-7.1 l/s per person. The performance of students increased by 

2.9 % (95 %CI 0.9-4.8 %) for math and 2.7 % (0.5-4.9 %) for reading when ventilation 

rate was increased by 1 l/s per person 
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Fang et al. (2004) observed the office environment for indicating the effect of the 

indoor environment on work performance. They created environments with different 

temperatures (20 °C, 23 °C, 26 °C), different humidity levels (40, 50, 60 %) and 

different ventilation rates (3.5 l/s, 10 l/s). Occupants were exposed to each condition 

for 280 minutes. They performed in simulated office work during each exposure and 

repeatedly marked a set of visual-analog scales to reflect their perception of 

environmental conditions and extent of SBS symptoms at the time. Researchers 

observed that temperature and humidity changed the perception of ventilation rate.  

 

The effect of lowering the ventilation rate from 10 to 3.5 l/s per person on perceived 

air quality might be mitigated by lowering the temperature and humidity levels from 

23°C  /50 %RH to 20°C / 40 % RH.. Ventilation isn’t the only factor that influences a 

person’s performance when it comes to indoor air quality. The impact of PM2.5 and 

PM10 levels on academic performance was studied by Alves et al. (2013). They 

measured the PM level on a regular basis and discovered that the school couldn’t reach 

the acceptable PM level roughly 70 % of the time. The findings clearly show that these 

schools have a significant degree of particulate matter exposure. Continual PM10 

measurements imply that students’ physical activity, which is thought to be higher in 

younger children, leads to a continuous process of sediment resuspension. 

2.1.3 Energy 

Due to the global climate crisis, energy efficiency has become very important 

throughout the world. As buildings consume 40 % of the world’s energy, issues related 

to energy efficiency in buildings play an important role in responding to the climate 

crisis (IEA, 2020).  

 

Ventilation components have had a huge impact on the total energy consumption of 

the building. With the new ventilation standards, the impact rate of ventilation on the 

total energy consumption of buildings is expected to increase. However, new building 
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regulations mandate the construction of more airtight buildings, which will definitely 

affect indoor air quality (Pagliano, 2010). 

 

Although it is generally believed that energy efficiency has a negative impact on air 

quality, it can be improved through some policies and decisions. Consistently, success 

can be achieved by measuring indoor air quality and ensuring that the building’s 

ventilation rate is never lower than the minimum required ventilation rate, which is a 

key parameter to provide energy efficiency and indoor air quality at the same time 

(Bipat, 2020). 

The complaints and consciousness about indoor air quality is increasing as time goes 

by although ventilation and air distribution systems are being more advanced. Four 

types of ventilation systems are widely used in buildings. Mixing ventilation, 

displacement ventilation, personalized ventilation, and hybrid air distribution are 

examples of these methods.  

 

Mixing ventilation (MV) is the method that mixes the contaminated room air with 

provided fresh supply air. Displacement ventilation (DV) is the method that displaces 

all contaminated room air with fresh supply air by supplying air at low velocity to 

create an upward air movement as it warms up by heat sources of the room. 

Personalized ventilation does not aim to ventilate the whole space, it is used to supply 

fresh air directly to occupants, i.e. office desks or hospital beds.  

DV and MV methods can provide efficient air supply, although they have two main 

problems. Firstly, they cannot be used in heating mode, secondly, the penetration of 

the air into the depth of room is poor. Hybrid air supply systems combine the 

characteristics of these methods.  

 

These systems can be classified with two different types: impinging jet (IJ) and the 

confluent jet (CJ) as can be seen on Figure 2.1. IJ has a vertical duct that supplies air 

to spread air over the floor. CJ is used to create circular apertures with the same flow 

(Awbi, 2017).  
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Figure 2.1  Hybrid air distribution systems; (a) impinging jet; (b) confluent jets  

2.1.4 Thermal Comfort 

It is a very critical fact that there is a very strong correlation between thermal comfort 

and indoor air quality. The PMV method, invented by Fanger, is the most often used 

method for assessing people's thermal sensibility. PMV indicates thermal feeling by 

the use of six distinct parameters: air temperature, air humidity, air velocity, mean 

radiant temperature, clothing insulation, and human activity. The PMV index value 

varies between 3 and +3, corresponding to human sensations ranging from chilly to 

hot (Fanger, 1972).  

 

Huzienga et al. (2006) made a large dataset by getting thermal comfort feedback of 

building occupants.  The results indicate that in only 11% of the buildings studied at 

least 80% of residents rated their thermal comfort as satisfactory. Air quality scores 

were slightly higher, with 26 % of buildings reporting occupant satisfaction of at least 

80 %. 
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2.1.5 Building Envelope and Interior Design 

Healthy building concept requires many different points of views while the building is 

being designed. Acoustic design, mechanical stability and basic safety for occupants 

are crucial parts of building design. However, those are not enough to ensure indoor 

environmental quality for building occupants. There are dozens of different factors 

that affect the well being of occupants. Sustainable design is progress for achieving 

ecological balance between construction and nature. This progress can combine 

natural and passive solutions with intelligent systems that give flexibility for 

controlling  environmental quality with resource consciousness (Loftness et al, 2007). 

 

Choosing the correct specifications for coatings, adhesives, surface finishing, and 

furnishings is important for designing buildings with sustainability principles 

especially to provide better indoor air quality. Architects must determine the mixture 

of those compounds, consequently their emission rates.   

 

The process of modeling the VOC emissions of used building materials and 

furnishings is critical and time consuming. As material emissions account for a 

significant portion of indoor pollution, a VOC emission model is required prior to 

entering the building phase. Those models are mostly constructed by using diffusion 

principles. Diffusion principles are generated by Fick’s law.  

 

According to Fick's diffusion law, diffusive flux moves according to the concentration 

gradient from a high-concentration area to a low-concentration area. Flores (2014) and 

Yang et al. (1998) developed a widely used numerical model that utilizes internal 

diffusion principles to predict VOC emissions. The model requires four parameters: 

initial VOC concentrations in the material, a solid-phase diffusion coefficient, a 

material-air partition coefficient, and the material's age. 
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2.2 Indoor Air Quality Parameters 

2.2.1 CO2 

CO2, which is present effortlessly in the environment, is a particle created by living 

bodies through expiration (deep breathing). The concentration of CO2 in indoor airflow 

in buildings will depend on human air and occupancy exchange rates (Occupational 

Health & Safety, 2016). 

 

Levels of CO2 concentration and their effects on humans: 

250-350 parts per million (ppm): ambient (normal) outdoor air level 

350-1,000 ppm: average amount found in heavily inhabited environments with 

frequent air exchange 

1,000-2,000 ppm: threshold associated with tiredness and poor air quality  

2,000–5,000 ppm: level associated with headaches, tiredness, and stagnant, stale, 

stuffy air; poor focus, lack of attention, moderate nausea, and elevated heart rate may 

also be present. 

>5,000 ppm: This suggests unusual air conditions in which excessive levels of several 

other gases may also be present. Toxicity or even oxygen starvation is a possibility. 

This is the permissible exposure level for common workplace hazards. 

>40,000 ppm: This level is immediately harmful due to oxygen deprivation. 

 

Carbon Dioxide can have dangerous effects on the body, leading to health issues 

including inflammation, reduced cognitive performance and also kidney bone issues 

(Jacobson et al. 2019). 

2.2.2 VOC 

Volatile Organic Compounds are organic substances with a low boiling point. Their 

volatility is proportional to the quantity of molecules in the air. VOC concentrations 
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can be 2 to 5 times higher than outdoor levels. However, they can be 1000 times higher 

than outdoor levels during some events.  (Fleder, 2020) 

 

Organic emissions can vary between buildings and building materials. Although the 

VOC amount can vary from 0.2 to 1.7  mg/m3 in old buildings, it can vary from 0.5 to 

19 mg/m3 in new buildings. From insulations and wood panels to varnishes and 

sealants, numerous building materials emit VOCs. Dry materials like acoustic ceiling 

tiles, solid wood, oriented strand board(OSB) and wet materials like floor wax, 

caulking sealant, wood stain emit a significant amount of VOC in buildings. The 

adverse health effects because of VOC emission can happen above 3 mg/m3. (Lafond, 

2020). 

 

Breathing VOCs may irritate the eyes, throat and nose. Also, they can cause nausea 

and difficulty in breathing, and may damage the main nervous system along with other 

organs. Even a number of VOCs are able to cause cancer (Lafond, 2020). 

2.2.3 PM2.5 

PM (Particulate Matter) is a term that refers to a mixture of solid particles and liquid 

droplets found in the air. The pathogenicity of PM is driven by the size, origin, 

composition, solubility and the ability of theirs to create reactive oxygen. PM2.5 

represents particles and droplets with diameters that are generally 2.5 micrometers and 

smaller  (Samoli et al. 2005).  

 

PM2.5 particle concentration at indoors is directly related to the concentration of 

outdoor particles. As a result, factors such as ventilation, whether through infiltration, 

mechanical ventilation, or natural ventilation, as well as the magnitude of the air 

exchange rate (AER), all contribute to the building's PM2.5 concentration. Other 

characteristics and the airtightness of the structure, in addition to the layout and 

operation of the HVAC system, may increase particle amount indoors (Allen et al. 

2012). 
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On average, 47 % of indoor PM2.5 concentrations are formed by soil particles 

suspended in the air with 13 % and 34 % by a mixture of organic (skin flakes, clothing 

fibers, potential condensation of VOCs) and calcium-rich particles (from chalk and 

building deterioration). 53 % of indoor PM2.5 concentrations are caused by outdoor 

emission sources. The major outdoor sources are motor vehicles (26 %), followed by 

biomass burning (17 %), soil dust (7 %), road dust (3 %), and marine aerosols (1 %) 

(Amato et al, 2014) 

 

PM2.5, which has very small diameters, mostly has big surfaces despite their size. This 

may cause transmission of toxic stuff,  passing through the filtration of nose hair and 

reaching till the end of the respiratory system with airflow. The diffusion of these 

particles into other parts of the body through air exchange can damage the whole body 

(Brunekreef and Holgate, 2002). 

2.2.4 PM10 

PM10 particles are produced by a variety of causes, including dust from untreated 

roads, smoke from fires, sea salt, automobile and truck exhausts, and industry. If PM10 

levels are too high, people with lung or heart problems may have additional symptoms. 

Symptoms are able to include wheezing, chest tightness, or maybe a problem in 

breathing (“PM10 Particles in the Air”). 

 

PM10 and PM2.5 particles are often formed by distinct emission sources and chemical 

processes. Combustion of gasoline, oil, or diesel fuel is a significant producer of 

PM2.5 and a significant source of PM10. Additionally, PM10 contains dust from 

construction sites, landfills, and farms, wildfires and brush/waste burning, industrial 

sources, wind-blown dust from open spaces, pollen, and bacterium particles. 

  

In recent years, researches show that PM2.5 has a much more adverse effect on our 

health than PM10. That’s why PM10’s effect on Indoor Pollution Calculation methods 
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has become less important in recent years. Guttikunda (2020) stated that new 

experiments are evidencing that smaller particles, that it will go deeper into the lungs 

and harm the human body. This is also one of the important reasons for WHO to push 

for all countries to have standards for PM2.5 instead of PM10 (Guttikunda, 2019). 

2.2.5 Formaldehyde 

Formaldehyde is a crucial substance used commonly to manufacture numerous 

household and building materials products. It's a product of combustion and some 

other natural processes. Formaldehyde is able to cause irritation of the epidermis, 

throat, nose and eyes. A human can contract cancer with high levels of exposure to 

formaldehyde (Environmental Protection Agency, 2016). 

2.2.6 Ozone 

The ozone layer in the lower atmosphere forms when sunlight hits some air pollutants. 

Sunlight catalyzes these pollutants, and they are converted into ozone. Ozone exposure 

could easily worsen currently existing lung conditions like emphysema, asthma, along 

with persistent bronchitis  (Air Filters for Clean Air, 2018). 

 

Home air cleaners are supposed to work by changing the charge of molecules. 

Therefore, the molecules are attracted to one another and combine harmlessly. 

However, the method used in these cleaners utilized to ionize air molecules similarly 

changes several of the oxygen in the environment into ozone. Studies show that these 

products are ineffective in removing interior air contaminants (Salonen et al. 2018). 

2.2.7 NO2 

Nitrogen dioxide is a gaseous substance. At room temperature, the primary route of 

exposure is through inhalation. Indoor sources of heat include tobacco smoke and gas, 

wood, oil, kerosene, and also coal-burning appliances. The primary impact of inhaling 
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raised amounts of nitrogen dioxide will be the higher likelihood of breathing issues. 

Nitrogen dioxide is able to decrease immunity to lung infection. This can result in 

problems like coughing, bronchitis, wheezing, colds and flu (Adamkiewicz, 2010). 

2.2.8 Temperature and Humidity 

Temperature and humidity affect us in two ways. Firstly, they may cause an 

uncomfortable environment. Secondly, they may accelerate bacteria and mold growth. 

When cooling operations are going on, dry air diffuses into the room and is warmed. 

The relative humidity drops 20 % immediately. This kind of drop in humidity makes 

airborne viral particles to travel rather easily.  Research suggests that relative humidity 

of 40-60 % is perfect for preventing the transmission of viruses (Medical News Today, 

2020). 

2.3 Indoor Air Pollutant Sources 

Over the last half-century, considerable developments have occurred in both 

construction materials and consumer products used within. Composite wood, foam 

padding, polymeric flooring, synthetic carpets, scented cleaning solutions, and agents 

for plastic objects have become ubiquitous. Precisely the same holds true for electrical 

and mechanical appliances like washer/dryers, computers and TVs. These products 

and materials produce several chemical substances like solvents, unreacted monomers 

(Weschler, 2009).  

In the 1970s, indoor pollutants that originated outdoors received high interest, 

particularly sulfur dioxide, nitrogen oxides, airborne particles and ozone, etc. with the 

increasing number of researches that show outdoor pollution impacts interior spaces 

(Andersen, 1967). Following that, attention was focused on contaminants that were 

easily detectable and quantifiable, such as formaldehyde, radon, asbestos, and tobacco 

smoke, as well as nonpolar volatile organic chemicals (Lioy et al. 1985). Over time, 

pollutants along with other semi-volatile organic compounds have been measured 
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inside. As far as better analytical tools have been created and instrument sensitivities 

improved, knowledge on indoor air pollutants improved massively. 

2.3.1 Building Materials 

Numerous building components given below release chemical compounds into the 

indoor air.  

 

Composite-wood: Following World War II, plywood started replacing solid wood on 

residential building construction. When plywood was originally introduced to the 

market, its adhesive resin was predominantly urea-formaldehyde, with rather high 

formaldehyde emission rates (Hodgson et al. 2002).  

 

PVC pipes: They have partly changed copper piping in several indoor plumbing 

programs, which includes empty, waste and vent programs, in addition to water 

distribution systems. PVC piping is rigid and does not release plasticizers in the same 

way as flexible PVC products do (e.g., vinyl flooring and wall covering). Nonetheless, 

organotin compounds are frequently used as stabilizers in PVC pipes, and these semi-

volatile components are likely to diffuse into indoor areas over time (Berens, 1985). 

2.3.2 Office Equipment 

Numerous office equipment given below release chemical compounds into the indoor 

air. 

 

Carpeting: In a health threat assessment of carpeted floors, two elements are of 

interest. One of them is that carpets may act as a repository for indoor air pollutants 

including soil, dust particles, allergens and additional natural contaminants that can 

build up in the carpets. The second one is that carpets might produce volatile organic 

compounds (VOCs) which could result in irritation and smell of mucous membranes, 

particularly in individuals that are sensitive. Nevertheless, assessments of new carpets 
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indicate that emissions happen to be lowered and have a shorter length. Pollution over 

an extended period depends partially on the deposition of soil, care and cleaning agents 

as well as on cleaning procedures (Becher et al. 2018). 

 

Paints: In the 1950s, water-based (latex) paints began to supplant solvent-based (oil) 

paints in indoor areas. Paints based on water produce fewer volatile organic pollutants 

than paints based on solvents. Their expansion accelerated significantly during the 

ecologically conscious 1970s, resulting in reduced VOC emissions during interior 

painting. The type of binder used in water-based paint determines the residual 

monomers and breakdown products that the paint emits. Initially, styrene-butadiene 

latex was the predominant binder in water-based color; this was later superseded by 

acrylic latex and vinyl acrylic (Weschler, 2009). 'Green' or' natural' paints released in 

last few years, dependent on organic ingredients, have a large market share. These 

substances are often unsaturated organic molecules (e.g., limonene, linseed oil, and a 

variety of other terpenoids) that are reactive with ozone. The oxidation products 

produced include secondary organic aerosols. 

 

Furnishing: The great bulk of furnishings (including composite and upholstered wood 

furniture) have potentially harmful components which could off gas chemical 

compounds and release particulates into the fresh air we inhale  (The Best of What's 

Healthy, Local and Green in Maine, 2013). 

 

Electronic Devices: Photocopiers generate ozone, styrene, formaldehyde, and a 

variety of other aldehydes, as well as semivolatile natural compounds (VOCs) from 

heat transfer fluids. The shells of personal computers and printers, as well as the circuit 

boards, release flame retardants and plasticizers, particularly brominated flame 

retardants. Certain laser printers have been identified as sources of ozone and 

particulates in the air. Computer monitors have evolved from cathode ray tubes to flat 

panel screens; the latter frequently generate fewer organic pollutants than the former 

(Lee et al. 2001).  
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2.3.3 Chemical Reactions 

Chemical reactions inside buildings are proven to take place between "oxidizing" 

compounds including ozone and many common indoor compounds like terpenes that 

are readily oxidized, airborne, or on surfaces like carpets, typically through the 

development and response of hydroxyl radicals. By-products of these inside air 

chemical reactions (e.g., hydroperoxides, acrolein, formaldehyde, ultrafine particles 

and fine) are hypothesized to trigger sensory irritation of airways and eyes or maybe 

skin irritation (“VOCs from Indoor Chemical Reactions and Health”). 

2.3.4 Air Conditioning 

The biological contaminants, which include bacteria, fungi, pathogenic bacteria, mites 

and viruses, can build up in the air-cooling system and may boost in fan coil unit and 

heat sinks where it is ideal for the growth of theirs. Air conditioning filtration screens 

and especially heat sinks are susceptible to the collection of dust. When the cooling is 

operating, the humid environment and also ideal temperature created by condensation, 

which comes with dust accrued in the heat sink, provides the ideal living condition for 

bacterias, other microorganisms and viruses to reproduce quickly (“Be aware of air 

conditioning pollution”). 

2.3.5 Smoking 

Tobacco smoking is a major contributor to indoor air pollution. According to research 

on toxicological substances of tobacco smoking, PM-fractions (PM10, PM2.5 and 

PM1) are increased dramatically after smoking in the room (Hamanaka and Mutlu, 

2018).  
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2.4 Indoor Air Quality Sensing Instruments 

Indoor air quality monitoring devices can assist in identifying and improving indoor 

air quality. Local and distributed monitoring of chemical substance concentrations is 

critical for safety and security purposes, as well as for efficiently controlling heating, 

ventilation, and air conditioning (HVAC) systems (Vito et al. 2011). 

 

Recently, numerous new technologies for monitoring environmental parameters have 

been introduced, all with the goal of improving the efficiency of indoor air quality. 

The availability of inexpensive, low-power embedded sensors, radios, and processors 

makes it much easier to construct a sensor bundle that detects a variety of parameters 

while engaging with the physical environment of applications such as air quality 

control via wireless communication protocols (Al-Haija et al. 2013). 

 

Low-cost analog air quality sensors are received increasing attention in recent years. 

However, analog air quality sensors require expensive and continuous re-calibration. 

Over the past three years, low-cost & low-power digital air quality sensors have been 

developed. These low-cost & low-power air quality sensors are user friendly, they 

require very less maintenance effort and they can continuously monitor during 10+ 

years (Chojer et al, 2020). 

2.4.1 Metal Oxide Gas Sensors (MOX) 

In principle, detecting the pollutants with MOX sensors is quite simple: The sensor 

consists of two parts. The sensing material (Metal Oxide Plate) located at the top, and 

the heater located at the bottom part of the sensor as can be seen on Figure 2.3.  The 

heater is heated by the sensor until temperatures between 150-400°C. The electricity 

flow starts with the increasing temperatures. According to sensitivity of the sensing 

material to the particular pollutant, the resistivity of the sensing material determines 

the level of the pollutant. This kind of sensor is the most popular type at indoor air 

quality sensing (Dey, 2018). 
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Figure 2.2. Metal Oxide Gas Sensor Structure (Figaro, 2020) 

2.4.2 Optical Gas Sensors 

Optical sensors measure the particles in flight. They are usually a low-cost way of 

getting real-time data about particles in the air we breathe. The working principle of 

these sensors is: A sensor and a beam of light are located at a particular angle to each 

other. When the particle passes in front of the light, light is reflected back to the sensor. 

The sensor generates a signal when it senses a reflected light. If the airflow is constant 

around the sensor, the length of this signal can be used to detect the size of the particle 

(Badura et al. 2018). 

 

 

 

 

Figure 2.3. Optical Gas Sensor Structure (Figaro, 2020) 
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2.4.3 Electrochemical Gas Sensors 

Electrochemical sensors work by responding with the analyte and creating an electric 

signal. Nearly all electrochemical gas detectors are amperometric sensors, producing 

the current that's linearly proportional to the pollutant concentration. The working 

principle of amperometric sensors is the measurement of the current-voltage 

connection in an electrochemical cell wherein equilibrium isn't developed. The current 

is quantitatively associated with the speed of the electrolytic process in the sensing 

electrode whose voltage generally is kept constant by another electrode (called guide 

electrode) (“Electrochemical Gas Sensors”).  

 

 

 

 

 

 

Figure 2.4. Electrochemical Gas Sensor Structure (Figaro, 2020) 

2.5 Indoor Air Quality Standards 

Table 2.1 Different Indoor Air Quality Standards for Different Parameters 

Parameter WHO OSHA EC ASHRAE EPA WELL 

Location  
(Country) 

Worldwide US EU USA USA USA 

O3 100 μg/m3  
8-hour mean 

0.1 ppm  
8-hour mean 

120 μg/m3  
8-hour mean 

N/A 0.070 ppm  
8-hour mean 

51 ppb  

8-hour mean  
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CO 7 mg/m3  
24-hour mean 
10 mg/m3  
8-hour mean 
100 mg/m3 
 1-hour mean 
100 mg/m3 
 15-min mean 

50 ppm  
8-hour mean 

10 mg/m3  
8-hour mean 

9 ppm 
 8-hour mean 

9 ppm 
 8-hour mean 
 
35 ppm 
 1-hour mean 

N/A 

CO2 N/A 5000 ppm  
8-hour mean 

N/A 1000 ppm  
8-hour mean 

N/A N/A 

SO2 20 µg/m3  
24-hour mean 
500 µg/m3  
10-minute mean 

5 ppm 
 8-hour mean 

350 µg/m3  
1-hour mean 
125 µg/m3 
 24-hour mean 
 

N/A 75ppb 
 1-hour mean 

N/A 

NO2 40 µg/m3 
 Annual mean 
200 µg/m3  
1-hour mean 

5 ppm 40 µg/m3 
Annual mean 
200 µg/m3  
1-hour mean 

N/A 100 ppb  
1-hour mean 
53 ppb 
 Annual mean 

100 ppb 

PM2.5 10 μg/m3  
Annual mean 
25 μg/m3  
24-hour mean 

5 mg/m3  
8-hour mean 

25 μg/m3 
 Annual mean 

N/A 35 μg/m3  
24-hour mean 
12 μg/m3 
 Annual mean 

15 μg/m3  
Annual mean 
 

Table 2.1 (continued) 

Parameter WHO OSHA EC ASHRAE EPA WELL 

 
PM10 

20 μg/m3  
Annual mean 
50 μg/m3  
24-hour mean 

15 mg/m3 
 8-hour mean 

40 μg/m3  
Annual mean 
50 μg/m3  
24-hour mean 

N/A 150 μg/m3  
24-hour mean 

40 μg/m3  
Annual mean 
50 μg/m3  
24-hour mean 
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Radon  4 pCi/L N/A N/A N/A 4 pCi/L 0.15 Bq/L  
[4 pCi/L] 

t-VOCs 500 μg/m3 5 ppm 
 8-hour mean 

N/A N/A N/A 500 mg/m3 

Reference (WHO, 2020) (Osha, 2020) (EC, 2020) (ASHRAE, 2020) (EPA, 2020) (WELL, 2020) 

2.6 Electronic Nose (EN) 

Electronic nose classifies odors by analyzing fingerprints of chemical compounds by 

using a sensor array with a pattern recognition algorithm. There are applications of 

electronic nose in many different industries including agricultural, environmental, 

food, manufacturing, and the military. However, there are still some challenges for 

developing an electronic nose to be used in a wide variety of applications. Huge 

amount of data from different sensors that can convert interactions of molecules into 

reliable patterns should be collected.  

 

Different pollutant sources result in diverse responses in sensors, and these responses 

provide different signal characteristics on various indoor pollutants in buildings. The 

algorithm evaluates the signal patterns and compares different pollutant characteristics 

to find the source of them.  (Caballero et al. 2003).  

Even though the program part could be believed as the "brain", the hardware part could 

be viewed as the receptors of an electronic nose system. The program section mostly 

has information processing algorithms that identify as well as classifying every scent 

detected utilizing digital signatures of the sensed chemicals. The hardware portion is 

essentially a sensor array. Since the key goal of the EN is classifying and detecting 

several scents, the sensing array must cover various kinds of specific sensors, wherein 

each sensor is liable for detecting a unique substance. Ideal sensor selection is one of 

the most important parts of the electronic nose concept. Sensors may vary according 

to the application it will be used.  

 



 
 
 
 

25 

The selection of ideal sensors to a certain process is a vital thing in this particular 

technology. It may be concluded here that choosing appropriate hardware along with 

cost-efficient application pieces is extremely important in developing a profitable EN 

system for a specific issue (Karakaya et al. 2019). 

 

 
Figure 2.5. Analogy between Biological nose and Electronic Nose (Karakaya et al. 

2019) 

2.6.1 History of Electronic Nose 

The term Electronic Nose was firstly used by Wilkens, Hatman, and Buck (1964). The 

chemical sensor array for odor pattern recognition was firstly developed by Persaud 

(1982). Gardner and Bartlett (1988) defined the word "e-nose" as "a device capable of 

detecting simple and complicated scents that consists of a partial specificity electronic 

chemical sensor array and an appropriate pattern recognition system." The working 

principle of the electronic nose is not based on receptors like traditional ways of 



 
 
 
 

26 

chemical sensing, but it is based on the distribution pattern processing. It is mostly 

defined as an “intelligent chemical sensor array system that mimics the mammalian 

olfactory system” (Park et al., 2019). 

 

Hatfield(1994) developed an integrated circuit (IC) to reduce size and power 

consumption of electronic nose. For a highly integrated EN, the chemoresistive sensors 

are well suited for IC integration owing to their simple electrical characteristics and 

interface circuitry. Therefore, chemoresistive sensors are widely used in electronic 

noses. Recent studies  shows that chemoresistive sensors will be able to give 2D 

outputs according to gas present in the air. This will increase the data amount to detect 

pollutant source correctly (Park et al., 2019). 

2.6.2 Components of Electronic Nose 

An EN involves each hardware and software elements that is briefly depicted within a 

smell category program within Fig. 2.7. Initially, the launched background gas is 

absorbed through the sensor array. The detection of the input signal can be analyzed 

based on the modification in voltage, frequency, current, opposition variables based 

on the kinds of elements within the sensor array. Since unique forms of receptors are 

generally used around sensor arrays, the acquired signals must be preprocessed to 

recognize all those modifications then and properly prepared to digitize them to be 

able to develop a dataset. Hence, the sensed indicators are properly manipulated, or 

converted, filtered, amplified, e.g., in the order to be readily utilized in additional 

stages.  

 

The prepared signals are later examined in conditions of the specific properties of 

theirs in the data-gathering stage. Furthermore, adequate information is acquired from 

these signals as well as the obtained information is preprocessed based on the demands 

of the used pattern recognition algorithm. Finally, the air signal is classified together 

with the pattern recognition phase. (Karakaya et al. 2019). 
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Figure 2.6. The Logic of Electronic Nose (Karakaya et al. 2019) 

 

Sensor Array: A sensor array is a combination of sensors, each one of which changes 

power into an electrical response that could be represented by a sequence of bits. The 

other part of the sensor array is analyzing these electrical responses with digital signal 

processing algorithms (SAM Lab). 

Since the key goal of an EN is sensing somewhat more than a single substance, this 

particular goal could be accomplished with increased accuracy just by merging many 

unique sensors in the array. Since every different application of EN requires a different 

type of combinations in the sensor array, the following conditions should be 

considered (Gebicki, 2016):  

● Response time 

● Sensitivity to different temperature and humidity ranges 

● Sensitivity to different chemical compounds 

● Stability of measurement 

● Size 

● Ease of Use 

● Price 

 

Machine Learning Algorithms: Machine learning is used for the procedure of 

recognizing patterns of the different pollutant sources. Pattern recognition could be 

described as the classification of information based on knowledge probably gained and 

on statistical info extracted from collected sensor data (GeeksforGeeks, n.d). 

K- Nearest Neighbor: The k-NN algorithm is a non-parametric classification 

approach. The input data set contains the k nearest training data points in the feature 
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space. The output is determined by neighboring votes. The object's estimated class is 

determined by the class that is most prevalent among its k nearest neighbors (Altman, 

1992). 

 

 
Figure 2.7. Classification with k-NN (Chugh et al., 2020). 

Support Vector Machines: Support vector machine (SVM) is an algorithm that is 

used for classification. SVM is a supervised learning algorithm, it looks at data and 

sorts the data into one of two categories. SVM gives a map of sorted data which is 

separated by margins between the two as far as possible as output. 

 

 
Figure 2.8. Classification with SVM (Yuan et al., 2017). 
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Artificial Neural Networks: Neural networks are an algorithm that is used to 

recognize underlying relationships in the dataset with a method that mimics how the 

human brain works. Neural networks refer to connected neurons. These neurons can 

adapt their parameters to changing input, this provides generation of the best possible 

result without needing to design any output criteria. 

2.6.3 Electronic Nose Applications for Pollutant Source Recognition 

Air Quality Analysis Applications:  

The electronic nose can be used in many different applications of environmental 

pollution monitoring. It is used in different mediums such as atmosphere, gasoline, 

water, and indoor. Negri and Reich (2001) modeled an electronic nose composed of 

sensors to address the gasses that pollute the atmosphere. They analyze the 

concentration and composition of carbon monoxide, ethanol, isobutane, and methane. 

They show that it is possible to understand environmental pollutants when they are 

detected in the presence of other sensible gases. 

Kim et al. (2013) developed an integrated chemical sensor array to detect and identify 

the environmental pollutants in diesel and gasoline. There is a low noise floor analog 

front end to achieve better signal processing performance on the system. They present 

methods to detect, digitize, and classify pollutants at a certain set of analytes. The 

analog front end reads data from eight conductometric and amperometric 

electrochemical sensors. Required features are extracted from the data and then pattern 

classification methods have been applied to the detection of the pollutants in gasoline.   

 

Jie et al. (2017) provided a very accurate electronic nose application. The sensor array 

is composed of the QS-01 from FIS, the TGS2600 and TGS2602 from FIGARO, and 

the temperature and humidity sensor SHT10. The pattern recognition technique is 

based on the Back Propagation (BP) neural network, a well-known machine learning 

technology. The comparison of the suggested performance e-nose's to that of previous 

e-nose solutions demonstrates the improvement. 
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Herrero et al. (2016) developed a portable and waterproof electronic nose with 

database connection to classify water pollutants in the cloud environment. The device 

is hand-held, battery-powered, and wireless. It uses four sensors to sample VOC levels. 

Artificial Neural Networks are used to classify pollutants in water. Results show that 

the proposed prototype can discriminate the samples measured (Blank water, acetone, 

toluene, ammonia, formaldehyde, hydrogen peroxide, ethanol, benzene, 

dichloromethane, acetic acid, xylene, and dimethylacetamide) with a 94% 

classification success rate. 

 

Zampolli et al. (2004) developed a dedicated, mini, cost-effective electronic nose by 

using metal oxide sensors and signal processing techniques to analyze data of 

electronic nose. The nose developed to quantify carbon monoxide and nitrogen oxide 

in mixtures with relative humidity and VOC at indoor environments. The study stated 

that it is possible to discriminate concentrations as low as 20 ppb for NO2 and 5 ppm 

for CO in the test gas environment thanks to the fuzzy logic system.  

Saad et al. (2015) developed a scalable wireless indoor air quality monitoring system 

and deploy these sensors to different rooms. They prepared controlled experimental 

setups to classify the sources influencing IAQ in various environments like ambient 

air, chemical presence, fragrance presence, foods and beverages and human activity. 

They developed sensor module cloud (SMC) to collect data of these experimental 

setups. After they constructed a labeled dataset to identify the source of pollution, they 

proposed an algorithm based on Artificial Neural Networks to classify the patterns of 

different sources. On average, the system was about 99.1% correct. Overall, it can be 

concluded that the system delivered a high classification rate based on ANN.  

 

Health Applications:  

Human exhaled breath is a mixture of 3000+ different VOCs. This gives the 

opportunity to use electronic nose technology in medical applications. Based on this 

hypothesis, there have been many published studies to assess the role of electronic 

nose technology for diagnosing various respiratory and systemic diseases (Dragonieri 

et al., 2017). 
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Tozlu et al.(2021) investigated if the electronic nose can be used to detect coronary 

artery diseases. The electronic nose is purposed for analyzing the air from exhaled 

respiratory. They collected data from 33 patients diagnosed with myocardial infarction 

that underwent a primary percutaneous coronary intervention, 22 patients with stable 

coronary artery disease and 26 patients without heart disease. They developed an 

electronic nose which includes the sensor array that has 19 different gas sensors on it. 

Statistical parameters like mean, derivative variance, kurtosis, skewness have been 

extracted. Collected data splitted as training data(64 %) and test data (36 %). Patients 

who have myocardial infarction were separated from healthy patients with 97 % 

accuracy. Patients who have stable coronary artery disease were separated from the 

healthy patients with 81 % accuracy (Tozlu et al., 2021). 

Only 15 % of lung cancer patients can be treatable. Kort et al. (2017) focused on 

electronic nose technology that measures and analyzes different volatile organic 

compounds in the breath of lung cancer patients.  They have done breath analysis on 

210 suspected patients where approximately half will have a confirmed diagnosis and 

the other half will have a rejected diagnosis of lung cancer. Furthermore, they analysed 

150 healthy control subjects. They have done pre-processing, data compression and 

neural networks to create a model that predicts the result. They reached 85 % accuracy 

to detect lung cancer cases (Kort et al., 2017). 

 

Food Applications:  

Jia et al. (2019) used an electronic nose to detect and recognize if the apple is fresh or 

moldy.  Apples were divided into two seperate groups, group A containing mixed 

apples with/without different molds and group B containing only fresh apples. The 

electronic nose took different VOC gas samples from every different sample in those 

groups. Four pattern recognition methods, including backpropagation neural network 

(BPNN), radial basis function neural network (RBFNN), linear discriminant analysis 

(LDA), backpropagation neural network (BPNN), support vector machines (SVM) to 

analyze freshness of apples. Results show that gas sensors gave a strong signal 

response to the characteristic flavor of apples. The accuracy of the four pattern 
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recognition methods showed that BPNN gave best results for the training and testing 

sets for both Groups A and B, with prediction accuracies of 96.3 % and 90.0 % (Group 

A), 77.7 % and 72.0 % (Group B), respectively (Jia et al., 2019) 

 

Zheng et al. (2009) recognized successfully four different long grain rice samples with 

an electronic nose that consists of 32 different polymer sensors. They reached over 80 

% accuracy by using CRYnose-320 technology. Song et al. (2013) investigated if the 

electronic nose that contains 18 different metal oxide semiconductor gas sensors can 

be used for measuring and modelling flavor quality changes of refined chicken fat 

during controlled oxidation. Partial least squares regression (PLSR) was used to 

predict relationships between the chemical parameters, GC–MS data, free fatty acid 

profiles and electronic nose responses for controlled oxidation of refined chicken fat. 

The results showed that peroxide value (PV) and acid value (AV) were predicted by 

the electronic nose responses with 73 % accuracy. 
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CHAPTER 3  

   MATERIAL AND METHOD 

3.1 Gas Resistance Based Electronic Nose 

BME688 gas sensor is a kind of electronic nose that can detect different gases by 

measuring their unique electronic fingerprint and therefore distinguish different gas 

compositions. However, the sensor should be trained with different gas compositions 

to be teached by Machine Learning. BME688 provides unique capabilities to detect 

different pollutant sources:  

● High sensitivity and selectivity towards various gases 

● Sensitivity and selectivity can be adjusted during operation 

● Low power consumption 

● Small footprint 

● Additional sensing capabilities for temperature, relative humidity and 

barometric pressure 

 

BME Board x8 (which is also referred to as BME Development Kit) is an experimental 

board with eight BME688 sensors.This board allows you to test and collect data with 

multiple configurations concurrently. This intrinsically increases the accuracy and 

reduces development time also.  It stores data on the external Micro SD Card that can 

be inserted on the board itself (Bosch, 2021). 
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Figure 3.1. BME Board x8 Schematic (Bosch, 2021).  

3.1.1 Gas Measurement Principle 

The BME680 is a metal oxide-based sensor that detects volatile organic compounds 

(VOCs) by adsorption on its sensitive layer. Most volatile chemicals that pollute 

indoor air respond to BME680 (exception CO2). The BME680 can detect the total 

amount of VOCs in the air, such as outgassing from paint, furniture, or rubbish, as well 

as high VOC levels from cooking, consumption of food, and exhaled breath or 

perspiration. 

 

BME680 will output resistance values as a raw signal, which will alter owing to 

variable VOC concentrations. The lower the resistance, the higher the concentration 

of lowering VOCs, and vice versa. Because this raw signal is impacted by factors other 

than VOC concentration, it is difficult to interpret. 

 

BME688 gas sensor's measuring principle is based on a metal oxide, such as SnO2, 

that has been heated to temperatures above 300°C. As ionosorbed oxygen species, O2 

molecules are adsorbed on the surface of metal oxide agglomerates and trap electrons 

(e.g. O-). Reducing gases, such as CO, combine with oxygen species to produce 
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gaseous CO2, which raises electrical conductivity. The pressure sensor employs a 

novel piezoelectric MEMS (micro-electro-mechanical-systems) technology to 

transform pressure changes into an electrical charge, which is then used to determine 

temperature. The humidity sensor is a polymer that changes resistance in response to 

variations in humidity. 

 
Figure 3.2. Working Principle of BME688. 

3.1.2 Configuration 

Each sensor at the board can operate with a specific setting which consists of Heater 

Profile (HP) and Duty Cycle (RDC). Hence, the term is stated as HP/RDC 

Combination.  

 

Heater Profile:  The gas sensor portion of the BME688 is placed on a hotplate to 

change its temperature. During scanning cycles, this procedure occurs. Depending on 

the heater profile, the gas sensor component can be heated to one of ten specified 

temperatures (HP). The gas sensor part's surface chemistry varies depending on the 
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heater profile used during scanning cycles. As a result, the sensor's sensitivity and 

selectivity vary according on the gas's heater profile. 

Heater profile has a significant effect on the performance of the gas sensor. Choosing 

the right Heater Profile depending on the use case can be crucial for getting good 

performance from the sensor.  It is one of the most important features of BME688. 

This allows the sensor to adopt to individual gases by adopting the measurement 

scheme to the gases' individual  

 Temperature profile with 10 steps which is run through by the sensor during a 

Scanning Cycle. Each of the 10 steps consists of: 

● A temperature 

● A duration (timebase is 140 ms) 

At the end of each step, a measurement is recorded and stored in the data. 

 

 
 

Figure 3.3. Heater Profile Schedule of Gas Sensor (Bosch, 2021). 

Duty Cycles: Duty cycle refers to a combination of a Scanning Cycle and a Sleeping 

Cycle. Scanning cycle can be described as one iteration of the Heater Profile. Hence, 

each Scanning Cycle can be determined from the period of the Heater Profile used. 

Furthermore, Sleeping Cycle can be described as the sensor’s not working mode and 
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it doesn’t perform any measurement during this cycle. The duration of the whole Duty 

Cycle defines the algorithm's response time. 

3.2 Multi Sensor Array Based Electronic Nose 

Since the first electronic nose is working based on TVOC related gas resistance, I 

decided to develop a new electronic nose which can measure different parameters. Due 

to the fact that parameters like PM, CO2, HCHO can be quite important to detect 

pollutant source, those parameters should be measured. 

3.2.1 Hardware Development 

Microcontroller 

Arduino Mega2560 is chosen as a microprocessor due to its computational power and 

large range of input-output opportunities compared to Arduino Uno.  The Arduino 

board is a microcontroller board based on the Atmega 2560 microprocessor that is 

open-source. The processing or wiring language is executed by this board's growing 

environment. With their simple to use platform, these boards have re-energized the 

automation sector, allowing anybody with a little or no technical background to begin 

learning the essential skills to program and run the Arduino board. These boards are 

used to link to applications on your PC such as MaxMSP, Processing, and Flash, or to 

expand independent interactive items. This page provides an overview of the Arduino 

Mega 2560 board, including its pin diagram and specs. 

 

The ATmega2560 microcontroller is used in microcontroller boards such as the 

"Arduino Mega." It has 54 digital input/output pins (16 analog inputs, 14 PWM 

outputs), 4 hardware serial ports (UARTs), an ICSP header, a power jack, a USB 

connection, and a RST button. It also has a crystal oscillator of 16 MHz, an ICSP 

header, a power jack, a USB connection, and a RST button. This board primarily 

contains all of the components required to support the microcontroller. As a result, this 
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board's power may be supplied by connecting it to a PC through a USB connection, a 

battery, or an AC-DC converter. A base plate can be used to shield this board from an 

unexpected electrical discharge (ElProCus, 2019). 

 

 
 

Figure 3.4. Arduino Mega2560 (ElProCus, 2019). 

Sensors 

Carbon Dioxide Sensor: The great accuracy of the Sensirion SCD30 sensor's carbon 

dioxide detecting technique NDIR was a major factor in the decision. When it comes 

to NDIR sensors, the fact that CO2 molecules absorb certain infrared wavelengths is 

what makes them so effective. As the quantity of CO2 rises, so does the amount of 

radiation it can absorb. 4.3 m is the wavelength that CO2 absorbs the most compared 

to other gases in the atmosphere. 

A light bulb emitting infrared radiation is put on one side of the tube. On the other 

side, two sensors with optical filters are installed. An 4.3 m band-pass filter is utilized 

to measure the intensity of radiation Id from the first sensor (CO2). It employs a band-

pass filter to measure the radiation intensity I0 at a wavelength where gas molecules 

are least likely to absorb it (the reference sensor) (usually 4 m). The Beer-Lambert 
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Law is used to calculate the CO2 content from the intensity of light detected at these 

wavelengths. 

 

Id/I0=e^KCL 

 

A CO2 absorption coefficient of K equals the CO2 concentration of C and a path length 

of L equals the distance between a radiation source and light detectors. The reference 

radiation intensity is I0. 

 

Fluctuations in radiation intensity are eliminated by the reference sensor. This 

indicates that as the intensity changes, Id / I0 remains constant since Id changes in the 

same manner in electronic form (SoS, 2021). 

 
Figure 3.5. Working Principle of NDIR Technology (SoS, 2021). 

For concentrations between 400 and 10000 ppm, the accuracy of SCD30 is around 

30ppm which makes it great compared to its low price ($30). The SCD30 contains 

built-in temperature and humidity sensors, as well as controls to adjust the current 

altitude, in order to increase accuracy. For even more precision, the SCD30 also 

collects measurements from the ambient pressure. 
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Figure 3.6. Sensirion SCD30 (SoS, 2021). 

Particulate Matter Sensor: Along with its dust collection resistance and very precise 

calculation approach, Sensirion SPS30 was chosen as the particulate matter sensor.  

 
 

Figure 3.7. Sensirion SPS30 Particulate Matter (SPS30, 2020).
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Laser scattering is the basis for the Sensirion SPS30's operation. A fan within the 

sensor creates a regulated airflow. An internal feedback loop between the 

microprocessor and fan maintains the sensor's airflow at a constant rate. The airflow 

carries particulate matter (PM) from the sensor's entrance to its exit. Particles in the air 

travel across a concentrated laser beam, generating light scattering in tandem with the 

photodiode. Sensirion's patented algorithms operate on the SPS30 internal 

microprocessor to transform the scattered light into a mass/number concentration 

output (SPS30, 2020). 

 

 
Figure 3.8. Internal Structure of SPS30. 

A correct front-end electronics design and the manufacturer's algorithms make a 

significant impact in the calculation of mass concentration from scattered light. 

Assuming a constant mass density in calibration, most low-cost PM sensors use the 

measured particle count as a multiplier to determine mass concentration. There are 

many distinct particle kinds with many different optical characteristics in normal life, 

from "heavy" home dust to "light" combustion particles. This assumption only works 

if the sensor monitors a single particle type (for example tobacco smoke). No matter 

what sort of particle is being detected, Sensirion's unique algorithms employ an 

innovative technique to accurately estimate mass concentration. In addition, this 

method provides an accurate estimate of the bin sizes. Unlike most current consumer 

PM sensors on the market, the PM4.0 is an extra in output. It enables new applications 
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for improved aerosol identification accuracy to enable new applications to be 

developed depending on particle composition (SPS30, 2020). 

 

Dust accumulates on the critical optical sections of the PM sensor, including the laser, 

the photodiode, and the beam-dump, and this causes the sensor's output to fluctuate. 

Sensirion created and integrated a patented, proprietary flow path technology into the 

SPS30 that prevents dust and dirt from building up on the optical components.  

 

 
Figure 3.9. Dust Prevention of SPS30 (SPS30, 2020). 

Formaldehyde Sensor: DFRobot Gravity HCHO sensor has been chosen as 

formaldehyde sensor due it’s fast response and high accuracy capability. This sensor 

may be used to determine the concentration of HCHO (Formaldehyde) in the air. The 

sensor module is capable of precisely detecting and measuring HCHO. Numerous 

benefits exist, including strong anti-jamming capabilities, high stability, up to 0.01ppm 

sensitivity, long life , and rapid reaction capacity (Gravity, 2021). 

The reagent or colorimetric card is the most often used solution for measuring HCHO 

in air. The colorimetric detector utilizes a solid phase colorimetric reagent composed 

of AHMT, ZnO, KIO4, and agar that discolors from white to purple when exposed to 

a certain concentration of HCHO gas. Although the color degree is proportional to the 

HCHO concentration levels, visual assessment often requires subjective judgment, 

which results in inaccuracy. Additionally, this approach will take a significant amount 

of time and will be utilized just once. And the conclusion is not particularly precise, 

leaving you with just probabilities (Sekine et al., 2016). The second solution is a VOC 
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gas sensor. It can detect HCHO in general terms, since this sensor measures the whole 

content of VOC gas, not only HCHO. The DFRobot Gravity Formaldehyde sensor 

module is capable of properly detecting and measuring the concentration of HCHO 

gas. 

 
Figure 3.10. DFRobot Gravity HCHO Sensor (Gravity, 2021). 

VOC, Ethanol, H2 Sensor: SGP30 has been chosen as a VOC sensor due to its wide 

range of output gas capabilities(H2 and Ethanol).  The SGP30 is a digital multi-pixel 

gas sensor that is ideal for use in air purifiers, demand-controlled ventilation, and 

Internet of Things (IoT) applications. CMOSens technology combines a digital I2C 

interface, a thermally controlled micro hotplate, and two preprocessed indoor air 

quality signals on a single chip. The SGP30 is the first metal-oxide gas sensor to have 

several detecting components on a single chip, providing more comprehensive 

information regarding air quality. The sensing element shows resistance to polluting 

gases encountered in real-world applications, resulting in exceptional long-term 

consistency and minimal drift (Zuo, 2021). The SGP30 provides two complimentary 

air quality values using a dynamic baseline correction method and on-chip calibration 

parameters. Both the H2 Signal and the Ethanol Signal can be used to calculate the gas 

concentrations c relative to a reference concentration cref using the formula:  

ln(C/Cref)=(Sref-Sout)/a with a = 512,  

Sref: the H2 Signal or Ethanol Signal output at the reference concentration 

Sout : Sout H2 or Sout EthOH. 
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Figure 3.11. SGP30 VOC Sensor (Sensirion, 2021). 

Communication Module 

NodeMCU has been chosen as a communication module due to it’s easily configurable 

hardware and open source software. NodeMCU (Node MicroController Unit) is based 

on the ESP8266, a cheap System-on-a-Chip (SoC). An operating system and SDK are 

also included with the ESP8266, which was created and produced by the company 

Espressif Systems. That makes it a great solution for Internet of Things (IoT) 

applications of all types. 

 

Although the ESP8266 is difficult to access and utilize as a chip, it is also quite 

powerful. Simply turning it on or sending a keystroke to its computer requires 

soldering proper analog voltages to its pins. Low-level machine instructions must also 

be written in order for the chip to understand them. With the ESP8266 embedded 

controller chip, mass-produced electrical devices may achieve this degree of 

integration.  

It is capable of either hosting the application or offloading all Wi-Fi networking 

operations from another application processor to another application processor. 

ESP8266 NodeMCU can be coupled with sensor-specific devices via its GPIOs with 

minimum work up-front and minimal burden during runtime when combined with the 

robust on-board processing and storage capabilities. 
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Figure 3.12. NodeMCU. 

 

Table 3.1 Overview of Measurement Capabilities 

Target Parameter Sensor Sensor type Measurement Range 

PM2.5 SPS30 Optical Laser 0-1000 ug/m3 

PM10.0 SPS30 Optical Laser 0-1000 ug/m3 

HCHO DFRobot  MOX 0-5 ppm 

TVOC SGP30 MOX 0-10000 ppb 

eCO2 SGP30 MOX 400-5000 ppm 

Raw Ethanol SGP30 MOX 0-20000 ppm 

Raw H2 SGP30 MOX 0-20000 ppm 

CO2 SCD30 NDIR 400-2500 ppm 

Temperature SCD30 Thermal 0-60 C 

Humidity SCD30 Thermal 0-100 %RH 
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Figure 3.13. Electronic Nose II developed by the author for the study. 
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3.2.2 Software Development 

Open source libraries of sensors and the communication module that are developed for 

the Arduino environment have been used on the software design. The sensors are 

programmed to send data every 10 seconds and after every 10 seconds the 

communication module transmits the data to the database via WiFi connection. 

Arduino communicates with sensors and the communication module via different 

serial communication methods like UART and I2C. 

 

 
 

Figure 3.14. System Architecture of Electronic Nose II. 

The Database: Firebase real-time database has been chosen due to it’s simple data 

storage mechanism and open source software that gives opportunity to directly store 

data in the database without needing any server-side application.  Firebase Realtime 

Database is a cloud-based database that stores data in JSON format. The data is synced 

in real time with each client connected. The Firebase Realtime Database is a NoSQL 

database that enables to store and sync data in real-time amongst users. It's a sizable 

JSON object that developers may manipulate in real time. The Firebase database gives 

the application with the current value of the data and modifications to that data through 
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a single API. The Realtime database enables users to collaborate. It includes mobile 

and web SDKs that enable us to develop apps without the need of servers. When users 

go offline, the Real-time Database SDKs serve and save updates using the device's 

local cache. When the device is connected to the Internet, the local data is immediately 

synced (Firebase, 2021). 

3.2.3 Calibration 

Calibration is a process that confirms a sensor's accuracy by comparing its results to 

established reference values. Calibrations of air quality sensors are performed in a 

controlled environment under the same circumstances as the sensor's intended use case 

to guarantee that the sensor functions properly and is within specification across the 

whole operating range. To calibrate an air quality sensor, a collection of reference 

values with numerous data values is required. 

 

PM Sensor: Particle counters function by collecting an air sample using a fan or pump 

and then measuring the quantity and size of the particles in the sample using light 

diffractometers. Dust may accumulate in the sensor over time, possibly interfering 

with airflow by settling on the fan and obstructing the device's optics. Since any error 

can make a big impact on the accuracy of the experiment although SPS30 has a dust 

prevention mechanism, the PM sensor was opened and cleaned to remove all the dust 

in the sensor. Then the sensor was put in a controlled and cleaned environment to make 

sure it measures no dust in the environment.  

 

TVOC Sensor: MOS sensors operate by heating a sheet of metal oxide particles. The 

sheet absorbs oxygen, the oxygen interacts with the target gas on the sheet, and the 

consequent change in the electrical resistance of the sheet may be utilized to measure 

the TVOC concentration.  

The sensor that was used in this experiment has production level calibration. The 

manufacturer calibrates the sensors using the ISO16000-29 standard "Test procedures 
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for VOC detectors." Apart from ethanol (EtOH), the sensors are also calibrated with 

breath-VOC (b-VOC), the composition of which is specified in the table below. 

 

Table 3.2. Used Gases for Calibration of the TVOC Sensor 

Molar 
fraction 

Compound Production 
Tolerance 

Certified 
accuracy 

5 ppm Ethane 20 % 5 % 

10 ppm Isopropene   20 % 5 % 

10 ppm Ethanol 20 % 5 % 

50 ppm Acetone 20 % 5 % 

15 ppm Carbon 
Monoxide 

10 % 2 % 

 

CO2 Sensor: Carbon dioxide sensors, on the other hand, are perhaps an exception to 

this rule. For periods when the building is empty, the carbon dioxide content in the 

external air may be utilized, which is normally about 400 parts per million. 

The majority of carbon dioxide sensors are non-dispersive infrared (NDIR) sensors 

that detect CO2 concentrations by gas spectrometry. NDIR sensors are not subject to 

deterioration in the same manner as TVOC sensors are, since no oxidation occurs on 

the sensor's surface. Additionally, some NDIR sensors feature a cover over the air 

intake to avoid dust accumulation. 

 

NDIR sensors, like any other sensor, will drift with time. Unlike particle matter and 

volatile organic compounds, however, we may utilize outside air as a baseline for 

adjustment. Because humans generate the great majority of carbon dioxide released 

inside buildings, when a building is vacant, the mixing of outside and interior air 

returns indoor CO2 levels to those found in fresh air. Then CO2 values acquired 

between occupancy periods may be calibrated back to 400 ppm to account for any drift 

during the sensor's lifespan. 
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An Automatic Baseline Calibration algorithm was implemented into the software of 

the electronic nose. The algorithm continuously monitors the sensor's lowest value 

over a predefined time period and gradually normalizes for any long-term deviation 

found as compared to the predicted fresh air CO2 concentration of 400 parts per million 

(or 0.04 percent vol). Carbon dioxide levels in most indoor applications fall to near-

outdoor levels at some point within a week. By collecting measurements over a seven-

day period and comparing the minimum number to the sensor's 400 point, the sensor 

may determine whether the zero point has to be adjusted. 

3.3 Chosen Materials for Detection 

Increased Indoor Air Pollution levels may cause specific health problems, whereas 

excessively high levels may be caused by situations such as air fresheners, combustion 

appliances, or water damage. Different parameters may originate from a variety of 

sources and have a variety of health consequences, including tobacco smoke, fire, and 

combustion equipment. However, for the sake of this research, focus will be on the 

attitude toward people. There are undoubtedly more activities and sources, but they 

are confined to five because of their prevalence in the indoor environment.  

 

Office Air: The office air is contaminated if it has an excessive amount of dust from 

carpets and furniture, or if it contains an excessive amount of ozone and beverages, or 

if it contains scents. The initial state of indoor air sources from office machinery.  

 

Combustion: The second need for IAP sources is combustion activity. The 

surrounding air is polluted by combustion. Ambient air is the air that occurs naturally 

in an interior setting without the presence of additional sources of indoor air pollution. 

Activities such as tobacco smoke create harmful gases such as HCHO. Combustion 

may contaminate indoor CO2, and particulate matter at a greater concentration than 

ambient air, which may be harmful to human health if it contains an excessive amount 

of dust from carpets and furniture or contains an excessive amount of ozone from the 
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workplace. Smoking was considered as a surrogate for combustion for the purposes of 

this research. 

 

Chemicals: The existence of chemical products or chemicals as a cause of indoor air 

pollution is the third requirement. Chemical goods, such as chemical cleaners that are 

often used in homes and businesses, may emit toxic levels of VOCs. Excessive VOC 

levels may result in respiratory disorders such as lung cancer. Thus, chemical cleaning 

products and cologne will be used as proxies for the existence of chemicals in this 

research.  

 

Food and Beverage: The presence of food and drinks is the fourth criteria for sources 

of indoor air pollution. Cooking activities and some foods and drinks release volatile 

organic compounds (VOCs), which may create an unpleasant odor within a building. 

VOCs have been linked to eye discomfort, headaches, and nausea in certain 

individuals. Thus, pizza, curry and coffee will be used as proxies for food and 

beverages in this research.  

 

Building Materials: Building materials lead to the release of air pollutants in interior 

spaces; as a result of the apparent interaction between the many kinds of construction 

materials and the room temperature, occupants are exposed to several contaminants 

concurrently. Different types of insulation, paints, and wood items made from these 

components may all contribute to pollution in a structure.  

 

The presence of VOCs in indoor air demonstrates the tremendous complexity of the 

processes and interactions involved. Differences in the adsorption capabilities of 

different construction materials, particularly in the case of heat insulation materials 

and wall paints, are to be anticipated. Thus, painted tile, varnished wood and stone 

wool used as proxies for building materials in this research. 
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Table 3.3. Chosen Materials with Their Activity Classes 

Chosen Material  Activity 

Office Air  Office Air 

Tobacco Smoke Combustion 

Cleaning Material Chemicals 

Cologne Chemicals 

Pizza Food and Beverages 

Curry Food and Beverages 

Coffee Food and Beverages 

Painted Tile Building Material 

Stone Wool Building Material 

Varnished Wood Building Material 

 

 

3.4 Experimental Setup 

 

The experiment was conducted in a box which has 130 liters of volume. On the lid of 

the box, some holes are opened on the two corners to enable some airflow to appear. 

Inside the box, there were two different electronic noses mentioned in previous 

sections, which are gas resistance based and multi sensor array based.   

 

While experimenting, the timestamps were being recorded on a table to be used in 

reading and analyzing the data. Data from the multi sensor array based electronic nose 

setup comes in UNIX epoch time which is the total seconds elapsed since  January 1, 

1970 (midnight UTC/GMT). On the other hand, data from the  gas resistance based 

electronic nose sensor came in DateTime format. Thus, recording timestamps is crucial 

to match between two data sources. 
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Each substance was put in the box for 30 minutes and between each substance, the 

box was carried out to outside for 10 minutes to refresh the air inside the box. The 

temperature of the experiment surroundings remained constant throughout the 

experiment. Nine different substances from five categories are measured. Those 

categories are ambient air, chemicals, building materials, food and beverages, and 

combustion. 

 
 
Figure 3.15. Experimental Setup with Different Materials 
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3.5 Data Analysis  

 

3.5.1 Storage 

 

The data collected from the gas resistance based electronic nose was downloaded from 

the SD card attached to it, while the data collected from the multisensor array-based 

electronic nose was downloaded from Google Cloud's Firebase Realtime Database. 

 

3.5.2 Development Environment:  

 

Downloaded data imported to Python Jupyter Notebook. Jupyter is an interactive 

development environment for notebooks, code, and data that is accessible via the web. 

Its adaptable user interface enables users to configure and organize data science, 

scientific computing, and machine learning operations.  

 

3.5.3 Data Visualization:  

 

Firstly, Plotly data visualization tool has been used to to identify and analyze data 

trends, outliers, and patterns. Violin plot has been used to analyze distribution of the 

data.  Violin plot displays the distributions of numeric data for one or more groups 

using density curves. Each curve's width is proportional to the approximate frequency 

of data points in each zone. 

 

Furthermore, line plots have been used to analyze parameter behavior over time. Also, 

pair plot has been used for analyzing relations between binary parameter distribution.  

Pairplot function allows the users to create an axis grid via which each numerical 

variable stored in data is shared across the X- and Y-axis in the structure of columns 

and rows. We can create the scatter plots in order to display the pairwise relationships 

in addition to the distribution plot displaying the data distribution in the column 

diagonally. 
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3.5.4 Modelling:  

 

Before modelling, the data for both electronic noses splitted into training and test with 

70 % and 30 %  ratio. Training set is the set of data for training the model and teaching 

it how to discover hidden features/patterns in the data. The test set is a distinct set of 

data used to validate the model following training. 

 

Naive Bayes, K-Nearest Neighbors and Random Forest Classifier models have been 

used to classify materials based on sensor data. Python’s sklearn machine learning 

library has been used to apply these algorithms on the data.  

The Naive Bayes Classifier is a simple and effective classification method that enables 

the development of fast machine learning models capable of making accurate 

predictions. It is a probabilistic classifier based on Bayes Theorem, which implies that 

it makes predictions based on an object's probability.   

 

K-Nearest Neighbour is one of the simplest machine learning algorithms. It is based 

on the approach of supervised learning. The kNN method makes an assumption about 

the similarity between the new case/data and the existing cases and assigns the new 

case to the category that is the most similar to the existing categories. The K-NN 

algorithm retains all available data and classifies each new data point based on its 

similarity to the previous data point. k denotes the number of neighbors should be 

calculated while class is detecting. Based on the number of k, the model accuracy can 

be optimized. In this research, k numbers are optimized to have best accuracy.  
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CHAPTER 4  

2 RESULTS AND DISCUSSION 

4.1 Experimental Results for the Gas Resistance Based Electronic Nose  

2 During the experiment, every scanning cycle took around 160 seconds. Every 

material has shown different gas resistance during those scanning cycles. Pressure 

remained constant for every parameter. Also, temperature and humidity slightly 

changed based on the material.  

4.1.1 Transient Variation of Temperature 

Temperature and gas permeability has a relation with following formula:  

 

P= P0.exp(-Ep/RT) 

 

where P0 denotes the pre-exponential factor ((cm3(STP)·cm)/(cm2·s·cmHg)), Ep 

denotes the permeation activation energy (J/mol), T denotes the temperature (K), and 

R denotes the ideal gas constant (8.314 kJ/(molK)). 

 

Therefore, big temperature differences between material experiments could affect gas 

resistance measured by the electronic nose. However, as can be seen at Table 4.1, the 

maximum difference between the mean of two materials is 2.57 °C which is between 

Coffee and Empty Box.  
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Table 4.1. Analysis of Experimental Temperature Measurements with the Gas 

Resistance Based Electronic Nose 

Material Mean Standard 
 Deviation 

Min Max 

Empty Box 30.80 2.08 23.24 34.28 

Alcohol 32.55 1.09  28.94 34.83 

Cleaning Material  32.51 1.07  28.71 34.64 

Painted Tile   32.74 1.05 29.43 34.92 

Varnished Wood  31.91 2.32 22.73 35.2 

Stone Wool  33.37 1.01 30.42  35.57 

Coffee  33.44 1.06 29.43 35.39 

Curry 32.51  1.12 29.02 35.51 

Smoking   32.89 1.07 29.43 35.4 

 

96 % of whole data points are between 30°-34°C degrees which can be seen on Figure 

4.1. Also temperature averagely fluctuates 3.1°C degrees for every 160 seconds which 

is caused by the internal scanning cycle of the electronic nose. 

 
Figure 4.1. Temperature Change Over Time for the Gas Resistance Based Electronic 
Nose 
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Figure 4.2. Temperature Change Levels of Different Materials for the Gas Resistance 
Based Electronic Nose. 
 
Due to the lack of significant differences in the temperature patterns of various 

materials, it was decided not to include temperature as a parameter while developing 

models on top of these datasets. Temperature differences in the ambient air during the 

experiment can overfit the model, resulting in misunderstandings about the prediction. 

 

4.1.2 Transient Variation of Humidity  

Shooshtari et al.(2021) discovered that increasing the relative humidity from 10 % to 

80 % reduces the electrical conductivity of the sensor by about 4 %. Therefore, 

humidity has an important effect on the gas resistivity of the electronic nose.  

 

All materials except painted tile have the same humidity pattern. Painted tile created 

extra humidity due to the chemical composition of the paint. The paint chosen was 

water based paint which increased the humidity level during the experiment. The 

painted tile has the maximum mean and maximum data point with 22.1 % and  32.9 

%.  Also, it has the biggest variance with standard deviation of 3.58. On the other hand, 

stone wool has the minimum mean and minimum data point with 14.55 %  and 12.68 

%. Since stone wool does not have any water based composition, it did not create extra 

humidity during the experiment.    
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Table 4.2. Analysis of Experimental Humidity Measurements with the Gas Resistance 

Based Electronic Nose 

Material Mean Standard 
Deviation 

Min Max 

Empty Box 15.95  2.18 12.78 26.07 

Alcohol 16.73 1.42 14.09 22.09 

Cleaning Material   15.57 1.18  13.10 19.74 

Painted Tile    22.12 3.58  13.27 32.90 

Varnished Wood 15.98 2.65  13.19 32.09 

Stone Wool   14.55  1.05 12.68  18.07 

Coffee 19.66  1.63 15.75 25.55 

Curry 19.27  1.77 14.74 25.60 

Smoking   19.36 1.84 15.45 25.63 

 

89 % of the data fluctuated between 15-23 % relative humidity during the experiment. 

Averagely, relative humidity fluctuated 3.9 % during every scanning cycle of the 

electronic nose. 

 
Figure 4.3. Humidity Change Over Time for the Gas Resistance Based Electronic 
Nose 
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Figure 4.4. Humidity Change Levels of Different Materials for the Gas Resistance 
Based Electronic Nose 

4.1.3 Transient Variation of Pressure  

Dabill et al.(1996) indicate that pressure, both continuous and transient, may have an 

effect on the sensors’ performance in certain cases. For instance, transitory pressure 

fluctuations influence the gas sensors, resulting in signal spikes and increasing the 

likelihood of false alarms. However, as can be seen at Figure 4.5, pressure remains 

constant during the whole experiment at 900 hPa level.  

 
Figure 4.5. Pressure Change Over Time for Gas Resistance Based Electronic Nose 
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4.1.4 Transient Variation of Gas Resistance  

Gas resistance is the electrical resistance of the gas sensor's MOX layer, which changes 

in response to the ionization of the air. The resistance of a thin metal oxide surface 

layer, which is changed by adsorbing volatile gas molecules from the surrounding 

environment, is measured in this sensor.  

Gas concentrations in pure, unpolluted air (no unfavorable gases) match to the sensor's 

maximum resistance output of 5000K ohms. Normally, the sensor produces a value 

for the gas resistance in the range of 0.5K ohms to 5000K ohms and beyond. For 

resistance values between 0.5K and 5000K ohms, a linear relationship is assumed and 

the output is scaled.  

Due to the sensor's heater profile throughout the scanning cycle, gas resistivity 

variations are extremely large. While the sensor became colder as it was heated, the 

gas resistance became very low at the lowest temperature.    

 

Table 4.3. Analysis of Gas Resistance Measurements with the Gas Resistance Based 

Electronic Nose 

Material Mean Standard 
Deviation 

Min Max 

Empty Box  720.6  926.26 0.8 4000 

Alcohol 6.8 12 0.7 109.4 

Cleaning Material 468  745.1  6.8 2834.4 

Painted Tile  267.5  472.4  2.7 2744.1 

Varnished Wood  283.3  463.8 1.89 2186.7 

Stone Wool  693.9  1116.8 7.7   3713.5 

Coffee  754.8  1241.2 6.8 4228 

Curry 192.7   328.8  2.2  1273.9 

Smoking 26.3 145.3  0.7 1549.6 
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As predicted, the empty box, stone wool, and coffee have greater averages than the 

rest. These materials contain much less chemicals and volatile organic compounds 

(VOCs) than others. Also, materials like alcohol and smoking have lower averages 

than others due to their heavy chemical composition. 

 

 
Figure 4.6. Gas Resistance Parameter Over Time for the Gas Resistance Based 
Electronic Nose 
 

 
Figure 4.7. Gas Resistance Change Levels of Different Materials for the Gas 
Resistance Based Electronic Nose. 
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4.2 Analysis of the Results with Different Classification Models for the Gas 

Resistance Based Electronic Nose  

4.2.1 The Naive Bayes (NB) Classification Model 

I began by using Naive Bayes modeling to classify the data. After developing the 

model on the training set, predictions were made on the test set. The model's accuracy 

on the test set is quite low, at 0.35. Additionally, the model's accuracy on the training 

set was verified to rule out the possibility of overfitting. The training set's accuracy is 

also quite low, at 0.34. Table 4.4 shows the recall, precision, and f1 score for each 

parameter.  

 

Table 4.4. Classification Report by the NB Classification Model for Experiments with 

the Gas Resistance Based Electronic Nose 

Material Precision       Recall   

Empty Box 0.49 0.10 

Alcohol 0.27 0.97 

Cleaning Material 0.35 0.27 

Painted Tile 0.75 0.49 

Varnished Wood 0.36 0.16 

Stone Wool 0.46 0.49 

Coffee 0.66 0.22 

Curry 0.61 0.14 

Smoking 0.18 0.27 

 

Despite the low precision of each material, alcohol has a high recall, which means that 

it can be easily separated from other materials if the material is alcohol. However, it 

can be seen from the confusion matrix in Figure 4.8. 51 % of the total data classified 

as alcohol which caused a lot of misclassification and decreased accuracy. 
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Figure 4.8. Confusion Matrix by the NB Model Classification Model for Experiments 

with the Gas Resistance Based Electronic Nose. 

(Y-Axis represents True labels of the data and X-Axis represent predicted labels by 

the model) 
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4.2.2 The kNN Classification Model 

The materials were then classified using the k-nearest neighbors algorithm. On the 

dataset, between two and fifteen neighbors were applied. The highest accuracy is 

achieved with the k=2 model. With a k=2 model, the accuracy on the training set is 

0.79 and on the test set is 0.57 as can be seen on Figure 4.9. 

Stone wool is the best classified material; approximately 80 % of painted tile 

predictions are true. With a recall rating of 0.91, stone wool has the highest recall 

value. The empty box has the lowest precision; only 34 % of predictions of an empty 

box are accurate. Additionally, it has the lowest recall value with 0.29. 

 
Figure 4.9. The kNN Model with Different Number of Neighbors Accuracy on 
Training and Test Set for the Gas Resistance Based Electronic Nose. 
 

Table 4.5. Classification Report by the kNN Classification Model for Experiments 

with the Gas Resistance Based Electronic Nose 

Material Precision       Recall   

Empty Box 0.34   0.29 

Alcohol 0.55  0.72   

Cleaning Material 0.45  0.65 

Painted Tile    0.79    0.54 

Varnished Wood  0.79    0.33  

Stone Wool  0.80    0.91 
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Coffee  0.73  0.76  

Curry 0.46  0.46  

Smoking  0.46   0.58 

 

Painted tile has the highest precision, 95 % of painted tile predictions are accurate. 

Stone wool has the highest recall value with 0.91.  

 
Figure 4.10. Confusion Matrix by the kNN Model Classification Model for 

Experiments with the Gas Resistance Based Electronic Nose. 
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As illustrated in Figure 4.10 above, Alcohol is frequently misclassified as tobacco 

smoke. 14% of alcohol samples were misidentified as smoking. Smoking is mostly 

misclassified as alcohol or curry. 25.2 % of tobacco smoke samples were misclassified 

as alcohol and 8.1% of them were misclassified as curry. On the other hand, 23.9 % of 

curry samples were misclassified as smoking. 

4.2.3 The Random Forest (RF) Classification Model 

Following to the kNN classification, the materials are classified using the Random 

Forest Classifier. The mode has been constructed using ten, fifty, and one hundred 

decision trees. There are no significant differences between the three models. As a 

result, I chose ten trees. The classification accuracy of 10, 50, and 100 tree models are 

0.82, 0.81, and 0.81.  

The importance of features has been determined by calculating the information gain 

of each feature using gini impurity. Gas resistance has the highest importance score of 

0.43, followed by humidity at 0.36. 

 
Figure 4.11. Feature Importance Scores by the RFC Model for the Gas Resistance 
Based Electronic Nose. 
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All materials have higher precision and recall values than kNN and Naive Bayes 

models. painted tile and varnished has relatively low recall values than others as can 

be seen at Table 4.6. 

 

Table 4.6. Classification Report by the RF n_tree=10 Classification Model for 

Experiments with the Gas Resistance Based Electronic Nose 

Material Precision       Recall   

Empty Box 0.58 0.43 

Alcohol 0.93 0.95 

Cleaning Material 0.64 0.77 

Painted Tile 0.82 0.74 

Varnished Wood 0.80 0.66 

Stone Wool 0.84 0.92 

Coffee 0.93 0.94 

Curry 0.76 0.86 

Tobacco Smoke 0.90 0.85 

 

All materials have higher precision and recall values than kNN and Naive Bayes 

models. Empty box and varnished wood have relatively low recall values than others 

as can be seen at Table 4.7.  

 

As illustrated in Figure 4.13 below, most of the data points are classified accurate. The 

most misclassified material is varnished wood. 15.1% samples of painted tile 

misclassified as cleaning material and 13.7% samples of them misclassified as stone 

wool.     
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Figure 4.12. Confusion Matrix by the RF n_tree=10 Classification Model for 

Experiments with the Gas Resistance Based Electronic Nose. 

4.3 Experimental Results for the Multi Sensor Array Based Electronic Nose  

4.3.1 Transient Variation of CO2  

CO2 is most often created by the air we breath, although it may accumulate inside in 

poorly ventilated places. CO2 levels in the building are determined by a variety of 
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factors: The number of persons who can fit into a place, the length of time that the 

place has been inhabited, the quantity of fresh outside air that enters the region, the 

area's dimensions, the extent to which combustion by-products contaminate the indoor 

air (e.g., idling vehicles near air intakes, leaky furnaces, tobacco smoke).  

 

Smoking had the highest average concentration at 1711 ppm, as predicted. Other 

materials have an average of 490 to 585 ppm. Except for smoking, all data is in the 

range of 480-600 ppm. Except for the smoking, the shift in CO2 levels is produced by 

the indoor ambient air of the room, which is inhabited by two or three persons during 

the experiment.  

 

Table 4.7. Analysis of Experimental CO2 (ppm) Measurements with the Multi Sensor 

Array Based Electronic Nose 

Material Mean Standard 
Deviation 

Min Max 

Empty Box  514.9   3.1 508  521 

Alcohol 534.6 4.4  529 5444 

Cleaning Material  503.2 7.9 490  517 

Painted Tile  553.5 3.4 543  559 

Varnished Wood    560 2.4  554  565 

Stone Wool  585.6  5.02 565  595 

Coffee  551.1   3.4  544  557 

Curry 490 4.6 479 498 

Tobacco Smoke  1711.7  472.1 618 2107 
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Figure 4.13. CO2 Change Over Time for the Multi Sensor Array Based Electronic 
Nose 
 

 
Figure 4.14. CO2 Change Levels of Different Materials for the Multi Sensor Array 
Based Electronic Nose. 

4.3.2 Transient Variation of Formaldehyde (HCHO)  

Formaldehyde is found in resins used to make composite wood products (hardwood 

plywood, particleboard, and medium-density fiberboard), building materials and 

insulation, household products such as glues, permanent press fabrics, paints and 

coatings, lacquers and finishes, and paper products; preservatives used in some 

medicines, cosmetics, and other consumer products such as dishwashing liquids and 

fabric softeners; and fertilizers and pesticides. As a result of combustion and some 

other natural processes, it may also be found in the following: Emissions from 
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unvented, fuel-burning equipment, such as gas stoves or kerosene space heaters; and 

smoking smoke. 

Increased amounts of HCHO were caused by chemicals such as alcohol, cleaning 

materials, and combustion activities such as smoking. Alcohol has the highest average 

at 4.7 ppm, followed by smoking at 4.3 ppm. Foods and beverages such as curry and 

coffee produced a trace amount of HCHO. During the studies, the varnished wood, 

stone wool, and empty box did not produce any HCHO. 

.  

Table 4.8. Analysis of Experimental HCHO (ppm) Measurements with the Multi 

Sensor Array Based Electronic Nose 

Material Mean Standard 
Deviation 

Min Max 

Empty Box 0 0 0 0 
Alcohol 4.7 1.1  0 5 

Cleaning Material 3.4 1.7  0.7 5 
Painted Tile 0.3 0.3 0  0.9 

Varnished Wood 0 0 0 0 
Stone Wool 0 0 0 0 

Coffee  0.1   0.02    0.06   0.15 
Curry 0.3 0.02 0.25  0.33 

Smoking  4.3   1.5  0.2 5 

 

 

 
Figure 4.15. HCHO Change Over Time for the Multi Sensor Array Based Electronic 
Nose 
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Figure 4.16. HCHO Change Levels of Different Materials for the Multi Sensor Array 
Based Electronic Nose. 

4.3.3 Transient Variation of PM2.5  

PM observed inside will comprise particles from the outside that have migrated 

indoors as well as particles from interior sources. Indoor PM may be created in a 

variety of ways, including cooking and combustion activities. 

Only smoking smoke created a significant quantity of particulate matter throughout 

the trial, as predicted. Additionally, curry is the second largest source of particulate 

particles in the experiment. 

Table 4.9. Analysis of Experimental PM2.5 (μg/m3) Measurements with the Multi 

Sensor Array Based Electronic Nose 

Material Mean Standard 
Deviation 

Min Max 

Empty Box 10.4 0.6  8.6 12.1 
Alcohol 9.9 0.5  8.7 11.1 

Cleaning Material 11.0 1.1 9.4 13.4 
Painted Tile 11.9 0.3 10.4  13.6 

Varnished Wood 8 1.2  5.9 12 
Stone Wool 7.2   0.8    5.7 10.4 

Coffee  9.2 0.5     8.1   10.8 
Curry 48.8  2.7   40  54.5 

Tobacco Smoke  54116   13675  283  61389 
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Figure 4.17. PM2.5 Change Over Time for the Multi Sensor Array Based Electronic 
Nose 
 

 
Figure 4.18. PM2.5 Change Levels of Different Materials for the Multi Sensor Array 
Based Electronic Nose. 

4.3.4 Transient Variation of TVOC (Total Volatile Organic Compounds)  

Due to the chemical nature of alcohol, it created the highest degree of voc. While 

cleaning materials, painted tile, and varnished wood all contain VOCs, they are not as 

volatile as alcohol. As a result, the alcohol generated sparks on the sensor. Smoking 

creates the second highest level of VOCs, followed by curry. 

 

 

 



 
 
 
 

76 

Table 4.10. Analysis of Experimental TVOC (ppb) Measurements with the Multi 

Sensor Array Based Electronic Nose 

Material Mean Standard 
Deviation 

Min Max 

Empty Box  1.3 2.4 0 5 
Alcohol 29846.9 16495.5 0 50484 

Cleaning Material 61.0 31.1 0 115 
Painted Tile 71.9 35.3 0 124 

Varnished Wood 93  85.1 0  225 
Stone Wool 47.2   20.8    0 80.4 

Coffee   4.3 5.9    0   25 
Curry  875.4 351.6   194  1327 

Tobacco Smoke  14169.8 6135 234 25526 
 

 
Figure 4.19. TVOC Change Over Time for the Multi Sensor Array Based Electronic 
Nose 

 
Figure 4.20. TVOC Change Levels of Different Materials for the Multi Sensor Array 
Based Electronic Nose. 
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4.3.5 Transient Variation of Other parameters (H2, Ethanol, Temperature, 

Humidity)  

Increased pollution results in a drop in H2 and ethanol levels. Smoking and alcohol 

contain the least ethanol and hydrogen peroxide. Additionally, ethanol and hydrogen 

had the most varied distributions, and all materials responded differently to these 

factors, as seen in Figure 4.22. 

 

During the experiment, only coffee substantially elevated the temperature. It raised the 

ambient temperature from 23 to 25 °C during the experiment. The temperature of the 

experiment surroundings remained constant throughout the experiment. 

As we saw with the electronic nose based on gas resistance, painted tile increased 

humidity from 20 % to 40 %. Additionally, curry and coffee elevated humidity levels 

slightly. Figure 4.22 illustrates the impact of all the binary combinations on the 

material classifications. 
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Figure 4.21. All Binary Combinations of Different Parameters on Material 

Classification. 

4.3 Analysis of the Results with Different Classification Models for the Multi 

Sensor Array Based Electronic Nose 

4.4.1 The Naive Bayes (NB) Classification Model 

I again started by classifying the data using Naive Bayes modeling. Predictions were 

made on the test set after the model was developed on the training set. The model's 

precision is far greater than that of the model developed for the gas resistance-based 
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electronic nose. The model's accuracy for the training and test sets is 0.94 and 0.92, 

respectively.  

 

Materials such as stone wool or an empty box have lower precision values than other 

materials because they did not produce any peaks on any parameter. Varnished wood 

has lower recall than other materials with 0.64 recall score. Only varnished wood is 

significantly misclassified. 18.9 % of varnished wood samples misclassified as stone 

wool and 17.5 % of samples misclassified as empty box. 

 

Table 4.11. Classification Report by the NB Classification Model for Experiments 

with the Multi Sensor Array Based Electronic Nose 

Material Precision Recall 

Empty Box 0.61 0.98 

Alcohol 0.99 0.96 

Cleaning Material 1.00 0.97 

Painted Tile 0.95 0.85 

Varnished Wood 0.98 0.64 

Stone Wool 0.83 0.95 

Coffee 0.95 0.95 

Curry 1.00 1.00 

Tobacco Smoke 1.00 1.00 
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Figure 4.22. Confusion Matrix by the NB Classification Model for Experiments with 

the Multi Sensor Array Based Electronic Nose. 
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4.4.2 The kNN Classification Model 

The materials were then classified according to their k-nearest neighbors distance 

using the k-nearest neighbors method. Between two and fifteen neighbors were applied 

to the dataset. The k=8 model achieves the maximum accuracy, as illustrated in Figure 

4.25. The accuracy of a k=8 model is 0.79 on the training set and 0.74 on the test set.  

 

Despite the fact that k=2 has the highest accuracy on the training set, it has a poor 

accuracy on the test set with 0.71 due to overfitting on the training set. 

As can be seen from Table 4.12, kNN has great classification accuracy on chemicals 

and combustion activities like alcohol, cleaning material and smoking. However, it 

does not have good performance on classifying building materials like stone wool, 

varnished wood. 

 

The most common misunderstanding occurs when varnished wood is classified as 

stone wool. 32% of varnished wood samples were incorrectly identified as stone wool. 

Except for this classification, the algorithm works nearly perfect. Almost every sample 

was correctly classified by k=2 kNN model as can be seen in Figure 4.26. 

 
Figure 4.23. The kNN Model with Different Number of Neighbors Accuracy on 
Training and Test Set for the Multi Sensor Array Based Electronic Nose. 
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Table 4.12. Classification Report by the kNN Classification Model (k=8) for  

Experiments with the Multi Sensor Array Based Electronic Nose 

 

Material Precision       Recall   

Empty Box 0.61   0.98  

Alcohol  0.99         0.95    

Cleaning Material 0.99 0.92  

Painted Tile  0.84   0.49    

Varnished Wood   0.50    0.58  

Stone Wool 0.54   0.58   

Coffee  0.66   0.73  

Curry  0.71    0.74  

Tobacco Smoke   1.00    0.96 
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Figure 4.24. Confusion Matrix by the kNN (k=8) Classification Model for 

Experiments with the Multi Sensor Array Based Electronic Nose. 

 

 



 
 
 
 

84 

4.4.3 Random Forest Classification Model 

The items are classified using the Random Forest Classifier following the kNN 

classification. Ten, fifty, and one hundred decision trees were used to develop the 

mode. Between the three models, there are no apparent differences. As a result, I 

decided to build the model with ten trees. The classification accuracy of 10, 50, and 

100 tree models is 0.95, 0.94, and 0.94, respectively. 

 

The importance of features was determined by computing the information gain 

associated with each feature using the gini impurity. PM 2.5 scores the highest at 

0.23, followed by Formaldehyde at 0.22 and TVOC at 0.13. The parameters with the 

least significance are Raw Ethanol (0.01), and Temperature (0.02). 

 

 

Figure 4.25. Feature Importance Scores for Experiment I RFC Model of Multi 

Sensor Array Based Electronic Nose 
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Table 4.13. Classification Report for Experiment I n_tree=10, RFC model of Multi 

Sensor Array Based Electronic Nose 

Material precision       recall   

Empty Box 0.61   0.98  

Alcohol   1.00        0.96    

Cleaning Material 0.97  0.97  

Painted Tile   0.86    0.95    

Varnished Wood    0.91     0.80  

Stone Wool 0.91    0.97    

Coffee  0.99   0.99  

Curry  0.99    1.00   

Tobacco Smoke   1.00    0.99 

 

The Random Forest algorithm combined with a multisensor array-based electronic 

nose provides the most accurate results. Except for varnished wood, the algorithm 

performs perfectly. 
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Figure  4.26. Classification Report for Experiment I n_tree=10, RFC model of Multi 

Sensor Array Based Electronic Nose 
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CHAPTER 5  

            CONCLUSION 

 

5.1 Summary of the Research  

Cleaning chemicals, construction operations, smoking, perfumes, building materials 

and outdoor pollutants can all contribute to indoor air pollution. An environmental 

danger that affects health and well-being is one of the biggest. In extreme 

circumstances, indoor pollution can be 100 times worse than outdoor pollution, and 

most people spend 90 % of their time indoors. Skin irritation, nausea, headaches, sick 

building syndrome, and even cancer have all been linked to poor indoor air quality. 

Poor air quality can be caused by a wide range of things, including construction 

materials, poor filtering, chemicals released from office furniture, smoking, food, and 

beverages. In order to improve interior air quality and, in some circumstances, retrofit 

the structure, finding the sources of pollution is essential.  

 

Different measures of indoor air quality have varying implications on human health. 

Temperature has a direct effect on occupant performance, with each degree above 

25°C resulting in a 2 % decrease in productivity. Inadequate thermal comfort can also 

contribute to symptoms of Sick Building Syndrome (SBS), such as headaches, itchy 

skin, dry or painful eyes, clogged or runny noses, and rashes. Humidity has a direct 

impact on the health and comfort of occupants, as well as the presence of biological 

pollutants such as mold spores. There is a strong correlation between increased indoor 

CO2 levels and increased symptoms of Sick Building Syndrome (SBS). Additionally, 

elevated CO2 levels can result in up to an 11 % drop in productivity, a 23 % impairment 

in decision making, and a 29 % reduction in information consumption. Short-term 

exposure to high levels of VOCs has a number of deleterious consequences, including 

irritation of the eyes and respiratory tract, headaches, dizziness, vision disturbances, 
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and memory impairment. Additionally, there has been a correlation between increased 

VOC concentrations in indoor air and allergies, asthma, and other respiratory health 

issues. PM2.5 are dangerous because they can enter the lungs and circulation. Short-

term exposure can irritate the lungs, cause coughing, and contribute to cardiovascular 

problems. Prolonged exposure can result in an early death from heart disease, lung 

disease, and cancer. 

 

Electronic nose concept has been decided to use in this research to detect pollutant 

sources in the building. Electronic nose is a sensor device that uses electrical signals 

to detect scents or flavors. It consists of sensor arrays and pattern recognition systems 

to replicate human senses. Electronic noses are used in different applications such as 

outdoor air, indoor air,  food,  health applications.  

 

Two distinct electronic noses were used in the study. One was built by Bosch and is 

called the BME688 Breakout Board, while the other was developed specifically for 

this purpose. On the BME Board, there are eight separate BME688 sensors that operate 

dependent on the MOX layer's gas resistance. Each sensor is simultaneously heated 

with a separate heater profile, and their reaction to the gas provides an eight-layer 

sensitivity dependent on the gas resistance of each sensor. The other electronic nose 

was built as a result of the BME688 sensor's limited sensitivity to VOC gases, despite 

the fact that other parameters may generate a vast amount of information as discovered 

during the literature review. 

 

The experiment was carried out in a box with a volume of 130 liters. On the lid of the 

box, two holes are opened to allow for some airflow. Nine distinct materials are 

measured (Office Air, Tobacco Smoke, Cleaning Material, Alcohol-Sanitizer, Curry, 

Coffee, Painted Tile, Stone Wool, and Varnished Wood) among five categories. 

Ambient air, chemicals, building materials, food and beverages, and combustion are 

the categories. 
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To classify materials based on sensor data, Naive Bayes, K-Nearest Neighbors, and 

Random Forest Classifier models were applied. Different metrics have been chosen to 

evaluate the models, including accuracy, precision, and recall. 

 

          

5.2 Main Results and Discussion  

     

The main objective of this research is to detect indoor pollutant sources by analyzing 

the sensor data that is collected by electronic noses. 95 % accuracy has been achieved 

after the evaluations on the hardware development and machine learning modelling 

development.  

 

• To begin, data from an electronic nose based on gas resistance have been 

evaluated. Only painted tile, due to its water-based composition, increased 

humidity levels. No material experienced a change in pressure. Temperature 

changed throughout the experiment due to the electronic nose's scanning cycle. 

Each material showed the same temperature pattern. Due to the lack of 

significant variations in the temperature patterns of various materials, 

temperature was removed as a parameter while creating models on top of these 

datasets. Temperature changes in the ambient air during the experiment can 

cause the model to overfit, leading to misinterpretations of the prediction. 

 

•  Then gas resistance values have been analyzed. Gas resistance refers to the 

electrical resistance of the gas sensor's MOX layer, which varies in response to 

air ionization. Reduced resistance levels are indicative of polluted air. The 

empty box, stone wool, and coffee all have higher averages. Additionally, 

materials such as alcohol and smoking have lower averages than others due to 

their chemical composition. 
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• Data has been modelled with Naive Bayes, kNN, Random Forest Classifiers to 

predict pollutant sources in the box. Naive Bayes has very low accuracy with 

0.34. Different k numbers have been tried to find optimum k. k=2 gives the 

best accuracy on the test set with 0.57. Then Random Forest algorithms have 

been applied with different numbers of trees. n_tree=10 gives the best results 

with 0.82 accuracy. Based on the RFC model’s feature importance, gas 

resistance is the most important feature as expected with 0.43 importance 

score.  

 

• Then, the data that is collected from multi sensor array based electronic nose 

has been analyzed. CO2, HCHO, PM2.5, TVOC, Ethanol, H2, Temperature, 

Humidity and eCO2 values have been analyzed. Smoking had the highest 

average CO2 levels at 1711 ppm. Other materials range between 490 and 585 

ppm.  Alcohol has the greatest average concentration of HCHO at 4.7 ppm, 

followed by smoking at 4.3 ppm. HCHO was created in trace amounts by foods 

and beverages such as curry and coffee. Only tobacco smoke generated a 

considerable amount of PM2.5 (54000 ug/m3) during the experiment. Due to 

the chemical composition of alcohol, TVOC produced the maximum degree of 

voc at 29000 ppb. Smoking produces the second greatest level of VOCs at 

14000 ppb, followed by curry at 875 ppb. 
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Table 5.1 Material- High Concentration Parameter Comparison 

Material High Concentration Parameter 

Alcohol HCHO, TVOC, Ethanol, H2, Humidity 

Cleaning Material HCHO, Humidity 

Painted Tile   HCHO, Humidity  

Varnished Wood    TVOC  

Stone Wool -  

Coffee  TVOC, Humidity, HCHO 

Curry TVOC, Humidity, HCHO 

Tobacco Smoke HCHO, TVOC, Ethanol, H2, CO2, PM2.5 

 

 
 

• Modelling on the data that is collected by a multi sensor array based electronic 

nose gives much more accurate results than the models with gas resistance. 

Naive Bayes gives 0.92 accuracy, kNN with k=8 gives 0.74 accuracy and 

Random Forest Classifier gives 0.95 accuracy. Based on the Random Forest 

feature importance calculation  PM 2.5 scores the highest at 0.23, followed by 

Formaldehyde at 0.22 and TVOC at 0.13. 

  

• The majority of electronic noses used in this application are based on VOC 

calculations. However, indoor air pollutants are far more complex than this, 

and hence utilizing a lot of possible parameters affecting indoor air quality 

yields the best results when determining the source of a pollutant in a building. 
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